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Outline

•
•

Intro:  Collider Dynamics,  EFT, and Factorization

•

Application to Top Mass Measurements at the LHC

New Tools for Forward Scattering (Glauber Operators)

New Tools For Hard Scattering (Jet Substructure, Multiple Vars)

•

• Application to understand BFKL evolution as operator ren.

• Lagrangian description of Factorization Violation

• Conclude
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Introduction
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Relevant Momentum Regions:

Collinear Splittings•

Soft Emission• Hard Propagators (short dist.)•

Glauber Exchange•
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Figure 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularities. In b) we show the corresponding Glauber operators for the four operators in

SCET with two equivalent notations. The notation with the dotted line in c) emphasizes the factorized

nature of the n and n̄ sectors in the SCET Glauber operators, which have a 1/P2
? between them denoted

by the dashed line.

For simplicity we will carry out most of our calculations using the back-to-back choice with ni = n,

nj = n̄, and ij = (n · n̄)/2 = 1. Here we have

pµ =
nµ

2
n̄ · p+ n̄µ

2
n · p+ pµ? , (5.4)

and the variables in Eq. (5.3) reduce to the true energy and longitudinal momentum

d4p =
1

2
d(n · p) d(n̄ · p) d2p? = dp0 dpz d2p? . (5.5)

We will often use the shorthand p+ = n · p and p� = n̄ · p. All of our calculations, including our

final results, will apply equally well to the more general case in Eq. (5.1). For this more general

case factors of ij must be inserted, but can be inferred by using the invariance to simultaneous

rescaling ni ! ⇢ini and n̄i ! n̄i/⇢i for each i, which follows from the allowed values for these

collinear basis vectors in constructing SCET. This symmetry is called RPI-III invariance [84, 85].

When we refer to the longitudinal momentum, for this more general case we always mean pzij .

We use a common convention for the collinear momenta of the external lines in the 2–

2 scattering graphs in Fig. 4a, so q(pn
2

) + q̄(pn̄
1

) ! q(pn
3

) + q̄(pn̄
4

), where the superscripts are

included to indicate the type of collinear momentum, and we have the same labeling for the

gluon scattering cases. This is illustrated in Fig. 1. When we need to provide further labels to

an external particle we will use the same subscript as the momenta, such as for color indices A
1

,

A
2

, etc, and for vector indices µ
1

, µ
2

, etc. Momentum conservation implies p
1

+ p
2

= p
3

+ p
4

.

– 22 –

p� � p� � p+
p�

p�

soft

n-collinear

n-collinear-

“n-collinear”

n-collinearn-collinear

forward scattering

onshell: p+p� = �p 2
�

p� p�

n̂
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Hard Scattering Collisions:

PDFs
d� = fafb � �̂ � F

partonic

hadronization
(In some cases by Operators,
 or is power suppressed)

Nonperturbative:

Perturbative: �̂fact = IaIb �H �
�

iJi � S Used to Sum 
Logs

µp � �QCD

µS

µJ , µB

µH

µpFactorization:

virtuality

or �̂fact = parton shower



Fields for various Modes:

�S , Aµ
S

dominant contributions from isolated 
regions of momentum space

•

use subtractions rather than sharp 
boundaries to preserve symmetry

•

�na , Aµ
na

�nb , A
µ
nb

�n3 , A
µ
n3

�n2 , A
µ
n2

�n1 , A
µ
n1

EFT for collider physics = Soft Collinear Effective Theory 



EFT Principles used for SCET

QCD & SCET must agree at long distances• Matching

• Power Counting

• Symmetry

short distance encoded by coefficients, C

Rigorously track expansions
Power counting theorems

Gauge symmetry within sectors

Lorentz & Reparameterization symmetries

for fields,  states,  amplitudes with loops



mode fields pµ momentum scaling physical objects type
na-collinear �na , Aµ

na
(na · p, n̄a · p, p�a) � Q(�2, 1,�) collinear initial state jet a onshell

nb-collinear �nb , Aµ
nb

(nb · p, n̄b · p, p�b) � Q(�2, 1,�) collinear initial state jet b onshell
nj-collinear �nj , Aµ

nj
(nj · p, n̄j · p, p�j) � Q(�2, 1,�) collinear final state jet in n̂j onshell

soft �S, Aµ
S pµ � Q(�, �, �) soft virtual/real radiation onshell

ultrasoft �us, Aµ
us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell

Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell
hard – p2 � Q2 hard scattering o�shell

Relevant Modes
�� 1 large Q

J1

2

3

−

+

J

J

p

p

na

nb

n1

n2

n3

n2
i = 0

n̄2
i = 0

ni · n̄i = 2

14

close to a collinear direction n̂j , where nµ
j = (1, n̂j), and directions for di↵erent collinear fields are

distinct, ni · nj � �2.

All hard o↵shell modes are integrated out of the e↵ective theory, leading to operators OK that

describe hard scattering processes. These operators get inserted only once for each amplitude,

but more than one operator may contribute for a given physical process. The Glauber modes in

Table I are also o↵shell modes since the scaling of their momenta forbits p+p� = ~p 2
?, but they are

o↵shell at the scale of the p2? ⇠ �2 momentum rather than at the hard scale ⇠ �0. These o↵shell

glauber modes are still integrated out of the e↵ective theory at the hard scale, much like potential

modes in NRQCD [35], since the simulaneous requirements of gauge invariance and homogeneous

order-by-order power counting can otherwise not be satisfied.2 Since the Glauber operators yield a

leading order potential there is no power counting restriction on how many times they may appear

in the amplitude or cross section for a given process.

In a general notation the leading power hard scattering operators OK for some desired SCETI

process, and the leading power Lagrangian for any SCETI process, can be written as

Lhardscatter
SCETI

=
X

K

CK ⌦OK({⇠ni , Ani}, us, Aus) , (5)

L(0)

SCETI
=

h

L(0)
us

�

 us, Aus
�

+
X

ni

L(0)
ni

�

⇠ni , Ani , ni ·Aus
�

i

+
n

LI(0)
G

�{⇠ni , Ani}, S, AS
�

+ L(0)
S ( S, AS)

o

.

Here CK are hard Wilson coe�cients that depend on large momenta n̄i · p of collinear gauge

invariant products of collinear fields. (Note that ultrasoft gauge fields can appear in the leading

order hard scattering operator in Eq. (5) for some SCETI processes. Although this is usually

not the case for collider physics with massless hard scattering producing jets, it is well known in

inclusive B-meson decays where the HQET b-quark field is ultrasoft or soft.) The hard scattering

operator and two terms in square brackets in Eq. (5) are what we refer to as classic SCETI, and

are the terms usually considered in the SCET literature. We will discuss OK further in Sec. IVB.

Glauber operators are contained in LI(0)
G which we discuss in Sec. VA, and must be included when

writing down the full SCETI Lagrangian. A leading power soft Lagrangian L(0)
S also appears in

SCETI along with LI(0)
G since it is necessary (for example) to reproduce the vacuum polarization

of the Glauber gluon shown in Fig. 3. Recall that both L(0)
us ( us, Aus) and L(0)

S ( S, AS) are each

identical to copies of the standard full QCD Lagrangian. Also recall that dropping the coupling to

ultrasoft gluons, L(0)
n (⇠n, An, 0) just involves collinear fields in a single sector and is again equivalent

2 In this EFT there is a tradeo↵ between 3 things, 1) having locality at an infrared scale, since the 1/~k 2
? Glauber

potential is non-local, 2) implementing gauge invariance and 3) maintaining a homogeneous power counting in �.

Since for many calculations and analyses we need to treat our operators non-perturbatively in ↵s, we choose in

favor of maintaining the latter two principals while giving up locality. This is the same choice made for NRQCD

in the vNRQCD [35, 48–52] or pNRQCD [53–55] formalisms. It is also the same choice made for SCETII, where

the soft Wilson lines are non-local at a scale p+ ⇠ p? ⇠ �. (Without Glauber operators SCETI maintains locality

at infrared scales.)

pµ = n̄i · p
nµ

i

2
+ ni · p

n̄µ
i

2
+ pµ

�

Integrate out 
these modes



Hard-collinear factorization

C �O

µS

µH : Wilson coe�cients for SCET Hard Scattering Operators
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Hard-collinear factorization

Operators are built of building block fields:
O = (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)

µS

“quark jet”
“gluon jet”

Wn = P exp
�
ig

� 0

��
ds n̄ · An(x + n̄s)

�
Wilson lines

�n = (W †
n�n)

Bµ
n� = [W †

niDµ
�Wn]



Soft-collinear factorization

Soft radiation knows only about bulk properties 
of radiation in the jets

(SnaSnbSn1Sn2Sn3) Soft Wilson Lines

µS
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Hard Scattering Factorization:

SCET
µJ , µB

µH

µp

E
QCD

Idea of how factorization arises in SCET:

factorized Lagrangian:

factorized Hard Ops:

L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

C � (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)(SnaSnbSn1Sn2Sn3)

µS

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)

12



J1

2

3

−

+

J

J

p

p

Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Particle Physics: Physics at Shortest Distances

u
d

u

m 110510101015 10�5 10�10 10�15

LHC

Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 1 / 34

time

Hard Scattering Factorization:

SCET
µJ , µB

µH

µp

E
QCD

Idea of how factorization arises in SCET:

factorized Lagrangian:

factorized Hard Ops:

L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

C � (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)(SnaSnbSn1Sn2Sn3)

factorized squared matrix elements defining jet, soft, … functions

µS
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Hard Scattering Factorization:

d� = fafb � �̂ � F
hadronization

Nonperturbative:

eg. Perturbative:

µB µH µJ µS
hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S Used to Sum 
Logs

µp � �QCD

µS

µJ , µB

µH

µp

E
QCD

SCET

Universal Functions: 

µB � pT

µS � Esoft

µJ � mJ

µH � mHiggs

µp � �QCD

(In some cases by Operators,
 or is power suppressed)



Examples of Factorization:
pp� Higgs + anything

d� =
�

dY
�

i,j

�
d�a

�a

d�b

�b
fi(�a, µ)fj(�b, µ) H incl

ij

�mHeY

Ecm�a
,
mHe�Y

Ecm�b
,mH , µ

�
• Inclusive Higgs production

(PDFs contribute,  No Glaubers,  No Softs)
(Collins, Soper, Sterman)
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dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

• Dijet production e
+
e
−

→ 2 jets

= �0H(Q,µ) Q

�
d� d�� JT

�
Q2� �Q�, µ

�
ST (�� ��, µ)F (��)

hard
function

jet functions perturbative
soft function

non-perturbative
soft function

d�

d�

� � 1thrust

(No PDFs,  No Glaubers,  Softs contribute)

p+

c hard

l2

2

p-

Q

lQ 0

cn

lQ lQ 0

us

nModes: •

•
•

• •
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dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

• Dijet production e
+
e
−

→ 2 jets

= �0H(Q,µ) Q

�
d� d�� JT

�
Q2� �Q�, µ

�
ST (�� ��, µ)F (��)

hard
function

jet functions perturbative
soft function

non-perturbative
soft function

d�

d�

� � 1thrust

(No PDFs,  No Glaubers,  Softs contribute)

thrust

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for & �

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

Two parameter fit:

{�s(mZ),�1}

�2

dof

=

440

485

= 0.91

N3LL� + O(�3
s)

Abbate, Fickinger, 
  Hoang, Mateu, IS
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• Higgs with a Jet Veto

Higgs With and Without Jets

Resummation for pjet
T .

0-jet cross section in SCET for pjet

T < pcut

T

(valid for R2⌧1 and pcut

T ⌧mH )

�
0

(pcut

T )=Hgg(mH)⇥[Bg(mH , pcut

T , R)]2

⇥Sgg(p
cut

T , R)

Soft

Jet Jet

V

V

p p

RGE running now happens in 2 dimensions: virtuality µ and rapidity ⌫

BgSggµS⇠pcut
T

⌫ RGE

µ RGE

⌫⌫B⇠mH⌫S ⇠ pcut
T

µB⇠pcut
T

µ
Hgg

|µH|⇠mH
2 ln2

pcut

T

mH

= 2 ln2

mH

µ

+ 4 ln
pcut

T

µ
ln

⌫

mH

+ 2 ln
pcut

T

µ
ln

µpcut

T

⌫2

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 17 / 32

veto anti-kT jets here

V= �, W , or Z

Higgs With and Without Jets

Resummation for pjet
T .

0-jet cross section in SCET for pjet

T < pcut

T

(valid for R2⌧1 and pcut

T ⌧mH )

�
0

(pcut

T )=Hgg(mH)⇥[Bg(mH , pcut

T , R)]2

⇥Sgg(p
cut

T , R)

Soft

Jet Jet

V

V

p p

RGE running now happens in 2 dimensions: virtuality µ and rapidity ⌫

BgSggµS⇠pcut
T

⌫ RGE

µ RGE

⌫⌫B⇠mH⌫S ⇠ pcut
T

µB⇠pcut
T

µ
Hgg

|µH|⇠mH
2 ln2

pcut

T

mH

= 2 ln2

mH

µ

+ 4 ln
pcut

T

µ
ln

⌫

mH

+ 2 ln
pcut

T

µ
ln

µpcut

T

⌫2

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 17 / 32

Bg = Igj(mH , pcut
T , R)� fj

pjet
T � pcut

T � mH

�QCD � pcut
T

(PDFs and Softs contribute,  Glaubers?)

(anti-kT jets, radius R)

I.S., Tackmann, Walsh, Zuberi
Becher & Neubert

Berger, Marcantonini, IS
   Tackmann, Waalewijn
Banfi, Salam, Zanderighi

Higgs With and Without Jets

Results for Higgs + 0-jet Bin.
0 jets: �

0

(pcut

T )

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

�
0
(p

cu
t

T
)
[p
b
]

mH =125.4GeV

gg ! H (8 TeV)

R = 0.4, mt EFT

NNLL0
pT
+NNLO

NLL0
pT
+NLO

NLLpT

STWZ, µH =�imH

�1 jets: ��1

(pcut

T )

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

mH =125.4GeV

�
�
1
(p

cu
t

T
)
[p
b
]

gg ! H (8 TeV)

R = 0.4, mt EFT

NNLL0
pT
+NNLO

NLL0
pT
+NLO

NLLpT

STWZ, µH =�imH

[Stewart, FT, Walsh, Zuberi]

Resummation yields much improved precision: small uncertainties and
good convergence

I Most precise predictions to date
I Jet clustering uncertainties are not included but appear to be under control

[Alioli, Walsh; Dasgupta et al.]
I PDF+↵s uncertainties are not shown (become relevant now)

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 18 / 32

I.S., Tackmann, Walsh, Zuberi

pp� H+ 0-jets



Factorization:

• Underlies all theoretical predictions for predictions of collisions.
(Perturbative calculations & Monte Carlo)

• Has been tested experimentally for more processes than we have
complete proofs.

• Allows us to distinguish functions which are

 perturbative:   calculate with an expansion in 

 non-perturbative:   extract from data exploiting universality,

�s � 1
�s � 1

• Can exploit dependence of the functions on scales µi

to sum series of large logarithms:
�

k

ak�k
s ln2k(z)

�

k

bk�k
s lnk(z), ,

�

k

ck�k+2
s ln2k(z) , . . .
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Underlying Event?
Radiation not described by primary hard scattering.  •
Modeled by Multiple Particle Interactions (MPI) in Monte Carlos•

No rigorous theoretical derivation in 
a factorization framework.
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New Tools for Hard Scattering

Jet Substructure

Multiple Variables
More Scales!

�
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 key tools for:                       Jet Substructure: 

tagging subjets 
grooming jets •

•

Soft Drop Trimming

N-subjettiness D2

Larkoski, Marzani, Soyez, Thaler Krohn, Thaler, Wang

Thaler, van Tilburg
(see also Stewart, Tackmann, Waalewijn)

Larkoski, Moult, Neill

eg.  W/Z tagging in 2016 
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virtuality

Bauer,  Tackmann, Walsh, Zuberi 2012 

More scales:

Multiple Measurements: Procura, Waalewijn, Zeune 2014

Sum Logs of Jet Radius, ln(R):
Chien, Hornig, Lee;  Becher, Neubert, Rothen,Shao; 
Hornig, Makris, Mehen; Kolodrubetz, Pietrulewicz, IS,

Tackmann, Waalewijn, …  

also used for:
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More scales:

virtuality
Larkoski, Moult, Neill

Factorization theorems for both collinear and soft subjects 
were use for for the calculation of  D2  by Larkoski, Moult, Neill
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Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��
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Larkoski, Marzani, Soyez, Thaler 2014

Pythia 8, partonic Pert. QCD at     NLL�
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Soft Drop Factorization Frye, Larkoski, Schwartz, Yan  2016

Adds:
Soft-Collinear 

function SC
d�

de2 . . .
= H(Q2)SG(zcut,�)

�
�
SC(e2, zcut,�)� J(e2)

�

isolates measurement
achieve NNLL precision
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Extracting a Short Distance Top Mass at the LHC

To improve on the current experimental measurements:

CMS: mMC
t = 172.44± 0.49 ATLAS: mMC

t = 172.84± 0.70

• must use a kinematically sensitive LHC observable
• theoretically tractable (factorization at Hadron level), 

to obtain a measurement in a precise mass scheme

• control contamination (ISR, Underlying Event, …)

 or calibrate the         parameter in Monte Carlo with 
  Hadron level theory predictions

mMC
t

Butenschoen, Dehnadi, Hoang, 
Mateu, Preisser, IS  2016(not discussed today)
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Top Jet Mass with Soft Drop

• Fat Jets

• Boosted Tops pT � mt retain top decay products

• Sensitivity ŝ � �t for measurement of jet-mass

pT � mT � �t > �QCD

• Grooming zcut,�

ŝ =
m2

J �m2
t

mt

mJ

Jet Veto T cut•
172 174 176 178 180

0.002

0.004

0.006

0.008

0.010

0.012 peak region

tail 
region

ŝ� �

ŝ � �

R� mt

pT

� > �t(Perturbative and Nonperturbative effects give              )

A. Hoang,  S. Mantry,  A. Pathak, IS (to appear)



Without Soft Drop:

Factorization Thm. derived with hemisphere 
masses.

•
e+e� � tt̄

Fleming, Hoang, Mantry, IS 2007 

QCD

SCET

HQET

d2�

dM2
t dM2

t̄

= HQ(Q)Hm(m,Q/m)
�

d�d��dkdk�

� Jt

�
ŝt �

Q�

m
,�t, �m

�
Jt

�
ŝt̄ �

Q��

m
,�t, �m

�

� S(�� k, �� � k�)F (k, k�)

control over mass scheme

172 174 176 178 180

0.002

0.004

0.006

0.008

0.010

0.012

d�

dM

M

mt Mpeak

� �QCDQ

m
peak shift



Without Soft Drop:

Can be extended to pp (using N-jettiness)•
QCD

SCET

HQET

pp� tt̄

d2�

dM2
J1dM2

J2dT cut
= tr

�
ĤQmŜ(T cut, R, . . .)�F

�
�Jt � Jt�II � ff

A. Hoang,  S. Mantry,  A. Pathak, IS

same jet functions! includes PDFs, multiple channels,
color correlations, Jet Radius R,  Jet veto, ISR, hadronization

BUT control of underlying event
 is model dependent (a factorization 
violating effect).

•

Simple one parameter function 
does give a reasonable model

(IS, Tackmann, Waalewijn 2015)
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With Soft Drop on one (or both) jets:

d2�

dM2
JdT cut

= tr
�
ĤQmŜ(T cut, Qzcut,�, . . .)�F

�
�Jt�II � ff

�
� �

d�Jt

�
ŝt �

Q�

m
,�t, �m

�
� SC

�
��

� k2+�

2�Qzcut

� 1
1+�

, Qzcut,�

�
F (k)

�

Ensure soft drop 
does not touch      Jt

Restricted range, can only apply  a “light soft drop” for tops:

Ensure soft drop removes global 
soft radiation from measurement      

“light grooming here”

�t

m

� Q

2m

��
� zcut �

2m�t

Q2
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R
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Wow!
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input mass in
Pythia =173.1 GeV

e+e� :

pp : hadronic+MPI

partonic
hadronic

partonic
hadronic

pT or Q
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Jet Radius 
Dependence

residual dependence
~ 200 MeV (this pT)
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Beam Cut 
Dependence
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zcut dependence

Transition for “light grooming” 
as predicted by factorization!
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Pythia  vs.  Factorization
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Pythia vs. Factorization 
with SoftDrop

include: 
  MPI,
  Hadronization

input mass in
Pythia =173.1 GeV
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Pythia vs. Factorization 
with SoftDrop

include: 
  MPI,
  Hadronization

input mass in
Pythia =173.1 GeV
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Pythia vs. Factorization 
with SoftDrop

include: 
  MPI,
  Hadronization

input mass in
Pythia =173.1 GeV
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Adding NLL uncertainties
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Looks very promising. 

But note that this was high pT.   
Not yet clear whether lower pT 

values can be predicted with 
SoftDrop.

(Pythia:  curves do not change for lower pT with R=1)
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Pythia vs. Factorization, no SoftDrop
(include MPI & Had., stronger beam cut)

[750, 2000]

various pT
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L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)

Determine Glauber Lagrangian

IS, Rothstein  arXiv:1601.04695  
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“Factorization Violation”

• Measurement doesn’t factor:  no simple factorization with universal 
functions.  (eg. Jade algorithm)

Phrase is used in different ways.  

Factorization formula is invalid. 

Reasons Factorization could fail:

• Divergent convolutions, not controlled by ones regulation procedures.  
(Requires more careful definition of functions.) � 1

0

dx

x2
��(x, µ)

Interactions that couple other modes and  spoil factorization. •

cancel in proof for Drell-Yan

122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S�



1

~p 2
1?

1

~p 2
2?

� 

n̄ · p1 n̄ · (P�p1)

n̄ · P
n · p2 n · (P̄�p2)

n · P̄
�

⌘ S� E(p1?, p2?),

spectator-spectator 
Glauber exchange

All examples of factorization violation I know of that has been studied in the literature 
are related to Glauber exchange.
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Glauber Exchange could
violate factorization: 122

n
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n
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S�



1

~p 2
1?

1

~p 2
2?

� 

n̄ · p1 n̄ · (P�p1)

n̄ · P
n · p2 n · (P̄�p2)

n · P̄
�

⌘ S� E(p1?, p2?),

couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:

19
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)



49

Modes: �� 1 large Q

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

fwd. scattering
n-n̄

n n

ssfwd. scattering
n-s

fwd. scattering
n̄-s n n

ss

pµ � Q(�2,�2,�)

pµ � Q(�2,�,�)

pµ � Q(�, �2,�)

(+,�,�)

can do calculations with back-to-back collinear particles, then generalize

(also scatter forward gluons) 

s� t



�� 1 large Q

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?
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v̄n̄
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, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

fwd. scattering
n-n̄

n n

ssfwd. scattering
n-s

fwd. scattering
n̄-s n n

ss

1
k2
�

potentials

instantaneous in x+, x� (t and z)

•

•

can do calculations with back-to-back collinear particles, then generalize

Modes:
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Goals for treating Glauber Operator in EFT:

•

•

•

•

•

      style renormalization for rapidity divergences 
(counterterms, renormalization group equations, …)

MS

Hard Scattering and Forward Scattering in single framework

•

Sum Large Logs:   

Factorization violating interactions may also have factorization formulae

Distinct Infrared Modes in 
  Feyn. Graphs + Power Counting 

Valid to all orders in       &  clear path to study subleading power 
  amplitudes with Glauber effects (subleading ops & Lagrangians)

•

Framework to (re)derive factorization theorems via

derive when eikonal 
approximation is relevant

�s

(could predict things about UE, etc.)

ln(x),ln
�Q2

m2

�

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)
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Full Leading Power Glauber Lagrangian:

LII(0)
G =

�

n,n̄

�

i,j=q,g

OiB
n

1
P2
�
OBC

s
1
P2
�
OjC

n̄ +
�

n

�

i,j=q,g

OiB
n

1
P2
�
OjnB

s

sum pairwise 
on all collinears

sum on all
collinears 

(2 rapidity sectors)(3 rapidity sectors)

Interactions with more sectors are given by T-products•
No Wilson coefficients ie. no new structures at loop level. •

Uses SCET building blocks:

n-collinear components of SCET operators for QCD (other than the leading power kinetic term)

contain three terms [83]

�n , Bµ
n? , Pµ

n? . (4.8)

The full expressions for �n and Bµ
n? are given below in Eqs. (4.10) and (4.15) and carry global

fundamental and adjoint color indices (also discussed below), but are gauge invariant under local

collinear gauge transformations due to the presence of collinear Wilson lines. When expanded

these quark and gluon building block fields contain the physical quark and gluon components,

�n = ⇠n + . . . and Bµ
n? = Aµ

n? � (Pµ
?/P̄)n̄ · An + . . .. To reduce operators down to the three

objects in Eq. (4.8) we rewrite all n̄ ·An’s as Wn Wilson lines, and absorb dependence on n̄ ·P into

Wilson coe�cients. We also use the equations of motion to remove in · @ �n, in · @ Bn?, P̄ n · Bµ
n,

in · @ n · Bn, and use operator identities to remove [iDµ
n?, iD

⌫
n?] and [iDµ

n?, in · Dn] [83]. Here

g n · Bn =
⇥

W †
nin ·DnWn

⇤

. Using the scaling of the fields deduced from their kinetic terms, the

power counting for these collinear building blocks is �n ⇠ �, Bµ
n? ⇠ �, and Pµ

n? ⇠ �.

We will find it useful to also use the following building blocks for soft fields

 n
s , Bnµ

S? . (4.9)

Here the n superscript denotes the soft gauge field component n ·As appearing in the soft Wilson

lines in these operators. For an analysis involving back-to-back n-collinear and n̄-collinear sectors

we will see that  n
s ,  

n̄
s , Bnµ

S?, and Bn̄µ
S? all appear. Using the scaling of the fields deduced from
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where FT is for Fourier transform, and P stands for path ordering. The Fourier transform

is often written out in momentum space which enables making explicit the notation for the

multipole expansion (the lines remain local in the coordinate corresponding to residual momenta,

even though they are extended for the larger momentum associated with the s coordinate shown

here). Under a collinear gauge transformation ⇠n ! Un⇠n, Wn ! UnWn, so �n is invariant,
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The collinear and soft building blocks that involve a single gluon field at lowest order in the

coupling are
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⇥
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⇤
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⇥
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⇤
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⇥
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⇤
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⇥
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⇤
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⇥
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⇤
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⇥
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S?

⇤

Sn̄ , (4.15)

where the Wilson lines here are the same as those in the quark building blocks, again with a

direction determined by matching. These gluon operators are in an adjoint representation so we

can write Bµ
n? = BµA

n?T
A etc. The Wilson lines appearing here can be combined into a single

Wilson line in the adjoint representation, for example we have

BAµ
n? =

1

n̄ · P n̄⌫iG
B⌫µ?
n WBA

n , BAµ
n̄? =

1

n · P n⌫iG
B⌫µ?
n̄ WBA

n̄ , (4.16)

with the adjoint collinear Wilson lines WBA
n = WBA

n [n̄ · An] and WBA
n̄ = WBA

n̄ [n · An̄], and

collinear field strengths igGAµ⌫
n TA = [iDµ

n, iD⌫
n]. A useful relation is

W †
niD

µ
n?Wn = Pµ

? + gBµ
n? . (4.17)

To lowest order in the coupling expansion

Bµ
n? = Aµ

n? � kµ?
n̄ · k n̄ ·An,k + . . . . (4.18)

There are analogous expressions for operators in other sectors, including the soft operators. The

Bµ
n? operator is gauge invariant under n-collinear transformations since iDµ

n?Wn ! UniD
µ
n?Wn

and W †
n ! W †

nU
†
n. Again a similar statement holds for the other gluon building block fields with

gauge transformations that have support in each of their respective sectors.

We also will make use of fields that are matrices in the color octet space, which we denote

with a tilde, such as

eBAB
n? = �ifABCBC

n? , eBnAB
S? = �ifABCBnC

S? , eGµ⌫ AB
s = �ifABCGµ⌫ A

s , (4.19)

where the soft field strength igGAµ⌫
s TA = [iDµ

s , iD⌫
s ]. We also have the adjoint relation

WT
n iD

µ
n?Wn = Pµ

? + g eBn? . (4.20)

In the hard scattering operators in both SCET
I

and SCET
II

we often need to specify the

large momenta for the collinear gauge invariant building blocks, �n and Bn?, for which we use
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Full Leading Power Glauber Lagrangian:

LII(0)
G =

�

n,n̄

�

i,j=q,g

OiB
n

1
P2
�
OBC

s
1
P2
�
OjC

n̄ +
�

n

�

i,j=q,g

OiB
n

1
P2
�
OjnB

s

30

OqB
n = �nT

B n̄/

2
�n OgB

n =
i

2
fBCDBC

n?µ
n̄

2
· (P+P†)BDµ

n?

OqB
n̄ = �n̄T

B n/

2
�n̄ OgB

n̄ =
i

2
fBCDBC

n̄?µ
n

2
· (P+P†)BDµ

n̄?

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ � nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ
n

2
· (P+P†)BnDµ

S?

⌘

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ
n̄

2
· (P+P†)Bn̄Dµ

S?

⌘

TABLE II. Summary of operators appearing in the leading power Glauber exchange Lagrangian in Eq. (41).

towards the n̄-collinear particles. This type of time ordered product will play an important role in

our calculations later on.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). For future reference

we summarize the operators appearing in Eq. (41) in Table II.

If consider the interactions of soft and collinear particles in SCETI then none of the tree level

calculations that we have done in SCETII change, and hence the Glauber operators are precisely

the same as in SCETII. In this case we are considering SCETI prior to making the ultrasoft field

redefinition, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of couplings between the collinear and ultrasoft fields in L(0)
ni for

SCETI, and the di↵erences between how momentum sectors are separated (via subtraction terms)

the precise behavior of these operators in loop diagrams will in general be di↵erent. We will see

this explicitly when comparing our one-loop matching calculations in Secs. VIIA and VIIC for

SCETII and SCETI respectively.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

sum pairwise 
on all collinears

sum on all
collinears 

(2 rapidity sectors)(3 rapidity sectors)

Interactions with more sectors are given by T-products•
No Wilson coefficients ie. no new structures at loop level. •
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Soft         OperatorOBC
s

basis of           operators allowed by symmetries:

50

total) and gBn
S? · gBn

S? + gBn̄
S? · gBn̄

S? (two Sn lines in the first term, two Sn̄ lines in the sec-

ond term). It also eliminates operators like (gBnµ
S?)(S

T
n̄ Sn)(gBn̄

S?µ) and (gBnµ
S?)(S

T
n̄ Sn)(gBn

S?µ) +

(gBn̄µ
S?)(S

T
n̄ Sn)(gBn̄

S?µ).

Finally we have the operator with a single soft gluon field strength, of which there are two

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄ , O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn , (86)

In principle this operator could be eliminated in terms of Bn
S?, Bbn

S?, P?,  n
S , and  

n̄
S fields using

the soft gluon equations of motion. However doing so would introduce non-local factors of 1/in ·@s
and 1/in̄ · @s which we have not allowed in our construction. Therefore we must keep these two

field strength operators.

All together the 10 operators in Eqs. (80,82,85,86) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1 = Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (78). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C1,...,10 in Eq. (76).

D. All Orders Soft Operator by Matching with up to Two Soft Gluons

Here we consider the basis of operators O1,...,10 determined above in Eqs.(80,82,85,86),

O1 = Pµ
?ST

n Sn̄P?µ, O2 = Pµ
?ST

n̄ SnP?µ, (87)

O3 = P? ·(g eBn
S?)(ST

n Sn̄)+(ST
n Sn̄)(g eBn̄

S?)·P?, O4 = P? ·(g eBn̄
S?)(ST

n̄ Sn)+(ST
n̄ Sn)(g eBn

S?)·P?,

O5 = P?
µ (ST

n Sn̄)(g eBn̄µ
S?)+(g eBnµ

S?)(ST
n Sn̄)P?

µ , O6 = P?
µ (ST

n̄ Sn)(g eBnµ
S?)+(g eBn̄µ

S?)(ST
n̄ Sn)P?

µ ,

O7 = (gBnµ
S?)ST

n Sn̄(gBn̄
S?µ), O8 = (gBn̄µ

S?)ST
n̄ Sn(gBn

S?µ),

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄, O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},
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total) and gBn
S? · gBn

S? + gBn̄
S? · gBn̄

S? (two Sn lines in the first term, two Sn̄ lines in the sec-

ond term). It also eliminates operators like (gBnµ
S?)(S

T
n̄ Sn)(gBn̄

S?µ) and (gBnµ
S?)(S

T
n̄ Sn)(gBn

S?µ) +

(gBn̄µ
S?)(S

T
n̄ Sn)(gBn̄

S?µ).

Finally we have the operator with a single soft gluon field strength, of which there are two

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄ , O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn , (86)

In principle this operator could be eliminated in terms of Bn
S?, Bbn

S?, P?,  n
S , and  

n̄
S fields using

the soft gluon equations of motion. However doing so would introduce non-local factors of 1/in ·@s
and 1/in̄ · @s which we have not allowed in our construction. Therefore we must keep these two

field strength operators.

All together the 10 operators in Eqs. (80,82,85,86) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1 = Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (78). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C1,...,10 in Eq. (76).

D. All Orders Soft Operator by Matching with up to Two Soft Gluons

Here we consider the basis of operators O1,...,10 determined above in Eqs.(80,82,85,86),

O1 = Pµ
?ST

n Sn̄P?µ, O2 = Pµ
?ST

n̄ SnP?µ, (87)

O3 = P? ·(g eBn
S?)(ST

n Sn̄)+(ST
n Sn̄)(g eBn̄

S?)·P?, O4 = P? ·(g eBn̄
S?)(ST

n̄ Sn)+(ST
n̄ Sn)(g eBn

S?)·P?,

O5 = P?
µ (ST

n Sn̄)(g eBn̄µ
S?)+(g eBnµ

S?)(ST
n Sn̄)P?

µ , O6 = P?
µ (ST

n̄ Sn)(g eBnµ
S?)+(g eBn̄µ

S?)(ST
n̄ Sn)P?

µ ,

O7 = (g eBnµ
S?)ST

n Sn̄(g eBn̄
S?µ), O8 = (g eBn̄µ

S?)ST
n̄ Sn(g eBn

S?µ),

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄, O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},

octet Wilson line octet reps

Matching with up to 2 soft gluons fixes all coefficients

O(�2)

OBC
s = 8��s

�

i

CiO
BC
i

Restricted by: Hermiticity
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where to obtain the last line we swapped n $ n̄, q? $ q0?, and A $ B. If we write factors of q?
and q0? using the operator P? then swapping of these momenta is automatically accounted for in

the hermitian conjugation, so we see that hermiticity requires that the soft operators satisfy

O†
i

�

�

n$n̄
= Oi . (78)

Finally note that each term in the Lagrangian conserves ?-momentum, so the total ?-momentum

is zero and we can freely let a P? operator act in either direction, Pµ
? = P†µ

? . We use this freedom

to eliminate all P†
?s. Finally, whenever possible we will use the operator identities

⇥Pµ
?(ST

n Sn̄)
⇤

= �g eBnµ
S?(ST

n Sn̄) + (ST
n Sn̄)g eBn̄µ

S? , (79)

⇥Pµ
?(ST

n̄ Sn)
⇤

= �g eBn̄µ
S?(ST

n̄ Sn) + (ST
n̄ Sn)g eBnµ

S? ,

to eliminate P?s in terms of eBS?s. Here the Pµ
? acts only inside the square brackets.

In addition to the above constraints, we will also impose the restriction that at most one

Sn Wilson line and one Sn̄ Wilson line appear in the soft operators Oi. Note that the non-

local products (ST
n Sn̄) and (ST

n̄ Sn) are dimensionless, have power counting �0, and are soft gauge

invariant (up to the global transformation at 1). If we did not adopt the restriction of having

only one soft line of each type, then it would be possible to insert multiple products of these

two-line structures, and the set of potential operators would be substantially larger. The correct

picture is that the Sn and Sn̄ adjoint Wilson lines are generated by integrating out o↵shell lines

attaching to the color octet n-collinear and n̄-collinear sector operators respectively, at the same

time that we remove propagators associated with Glauber exchange. Therefore the restriction we

impose that only one of each type of soft Wilson line appears is very natural. In standard SCET

applications to hard scattering, the presence of only one soft line for each collinear operator in a

given representation follows immediately from the use of the BPS field redefinition [18] in SCETI,

with subsequent SCETI to SCETII matching by lowering the p2 scale for the collinear fields to that

of the soft fields.9 This direct proof becomes more complicated in the current case, because we

are simultaneously removing o↵shell and Glauber propagators, and when doing the matching we

must consider time order product graphs on the SCET side of the calculation rather than just the

localized operator whose Wilson lines we want to determine.

We decompose the basis into operators with zero, one, or two eBS? fields, or one Gµ⌫
s field, and

consider these classes in turn. Without any eBS? fields the minimal basis satisfying the constraints

discussed above is

O1 = Pµ
?ST

n Sn̄P?µ , O2 = Pµ
?ST

n̄ SnP?µ . (80)

9 For the case at hand this argument is no longer su�cient. This is simple to see since in the case of forward

scattering the SCETI theory contains both soft as well as US fields in the spectrum. Having both types of soft

fields contribute to a physical observable is unusual in SCET, and is more akin to NRQCD as formulated in

Ref. [35] where the soft modes are not radiated but play a crucial role in renormalizing the potentials. In the case

of SCETI forward scattering the softs renormalize the Glauber kernel.

, one Sn, one Sn̄

operator identities:  eg.
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FIG. 16. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is

Fig. 17a = i
h

ifA2A1Ag↵�? n̄ · p2
ih

v̄n̄
n/

2
TBvn̄

i

(75)

⇥ 8⇡↵s

~q 2
?~q

02
?

igfABC
h

qµ? + q0µ? � n · q n̄
µ

2
� n̄ · q0n

µ

2
� n̄µ~q 2

?
n̄ · q0 �

nµ~q 02
?

n · q
i

= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq
nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the
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the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation
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FIG. 18. Two Soft Gluon Matching for the Lipatov Operator. a) Full theory graphs with scaling for external

particles labeled. b) EFT graphs involving the Lipatov Operator and two soft gluons. The first three graphs

are T-products while the last is the direct Lipatov Operator two gluon term.

and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1

2
.

Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1

2
.

Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1

2
.

Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5 have nonzero coe�cients. Putting together these results back into

Eq. (76) the final result is

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (98)

This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,

54

structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
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A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,
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Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1
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Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5 have nonzero coe�cients. Putting together these results back into

Eq. (76) the final result is
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This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (55)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(56)

Wn =
X

perms

exp

⇢ �g

n̄ · P
�

w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)

Other source of rapidity divergences are the 
Wilson lines which need to be regulated
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (55)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(56)

Wn =
X

perms

exp

⇢ �g

n̄ · P
�

w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)

(ala Chiu, Jain, Neill, Rothstein)

Glauber contributions. We also discuss zero-bin subtractions [56] from the Glauber region for

soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (5.43)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An n-

collinear gluons respectively [55]. At one-loop rapidity divergences will appear as 1/⌘ poles with

a corresponding logarithmic dependence on the cuto↵ ⌫. Since ⌫ is dimensionful, it technically is

⌫/µ that is associated to the rapidity, but we will still follow the common practice of referring to ⌫

as the rapidity scale. Here w is a book keeping coupling used to calculate anomalous dimensions

through

⌫
@

@⌫
w2(⌫) = �⌘w2(⌫) , lim

⌘!0

w(⌫) = 1 . (5.44)

The powers of ⌘ are fixed to ensure that the rapidity divergences cancel when summing over

sectors. That the correct choice has been made can be seen by regulating the corresponding

full theory diagrams and expanding around the soft and collinear limits. Counterterms will have

both 1/⌘ and 1/✏ poles, and are identified by taking ⌘ ! 0 prior to expanding for ✏ ! 0. The

regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(5.45)

Wn =
X

perms

exp

⇢ �g

n̄ · P


w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [55]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since

the exponentiation can be derived by permutations of momenta under which the regulator is

symmetric. An additional complication in the operators we consider is the presence of inverse

factors of n̄ · P and n · P that appear outside of the Wilson lines. Since our operators can be

written in di↵erent equivalent forms, these factors are required for consistency. Examples where

this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s , see for example Eq. (4.15). Here, the inverse

power to that in Eq. (5.43) is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of
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(Zero-bin subtractions, avoid double counting IR regions) 
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between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

X

ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual

soft and collinear sectors,

µ
d

dµ
(OqA

n +OgA
n ) = 0 , µ

d

dµ
(OqnA

s +OgnA
s ) = 0 , (144)

which implies even simpler relations for the µ anomalous dimensions,

�nµ ⌘ �qqnµ + �gqnµ = �ggnµ + �qgnµ = 0 , �snµ ⌘ �qqsnµ + �gqsnµ = �ggsnµ + �qgsnµ = 0 . (145)

Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of
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between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

X

ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual

soft and collinear sectors,

µ
d

dµ
(OqA

n +OgA
n ) = 0 , µ

d

dµ
(OqnA

s +OgnA
s ) = 0 , (144)

which implies even simpler relations for the µ anomalous dimensions,

�nµ ⌘ �qqnµ + �gqnµ = �ggnµ + �qgnµ = 0 , �snµ ⌘ �qqsnµ + �gqsnµ = �ggsnµ + �qgsnµ = 0 . (145)

Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of
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the coupling w by using (⌫d/d⌫)w2 = �⌘w2 (then setting the renormalized w = 1), we have

�qqn⌫ = �↵sCA

4⇡



� 2h(✏, µ2/m2) +
2

✏

�

=
↵s(µ)CA

2⇡
ln
⇣ µ2

m2

⌘

, (159)

�gqn⌫ = �↵sCA

4⇡



� 2g(✏, µ2/(�t))� 2

✏

�

=
↵s(µ)CA

2⇡
ln
⇣�t

µ2

⌘

,

�ggn⌫ = �↵sCA

4⇡



� 2g(✏, µ2/(�t))� 2h(✏, µ2/m2)

�

=
↵s(µ)CA

2⇡
ln
⇣�t

m2

⌘

,

�gqn⌫ = 0 .

For the µ anomalous dimensions at one-loop we have �ijnµ = �(µd/dµ)�V ij
n . Noting that the

combinations ↵s(µ)g(✏, µ2/(�t)) and ↵s(µ)h(✏, µ2/m2) are µ-independent, and recalling that

(µd/dµ)↵s(µ) = �2✏↵s(µ) +O(↵2
s) we find

�qqnµ =
↵s(µ)CA

2⇡



2 ln
⇣ ⌫

n̄ · p
⌘

+
3

2

�

, (160)

�gqnµ = �↵s(µ)CA

2⇡



2 ln
⇣ ⌫

n̄ · p
⌘

+
3

2

�

,

�ggnµ = �2↵s(µ)nFTF

3⇡
,

�gqnµ =
2↵s(µ)nFTF

3⇡
.

Note that these results satisfy the necessary condition for the paths in ⌫ and µ space to be in-

dependent [36], (⌫d/d⌫)�ijnµ = (µd/dµ)�ijn⌫ . From these results we can immediately check that

we reproduce the first relation in each of Eq. (141) and Eq. (145), �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ and

�qqnµ + �gqnµ = �ggnµ + �qgnµ = 0. Thus there is no overall µ anomalous dimension for the relevant

combination of operators, (OqA
n + OgA

n ), as anticipated. It is interesting to note that this occurs

due to a cancellation of terms between the anomalous dimensions generated by the two individual

operators. We also obtain the relevant rapidity anomalous dimension for (OqA
n +OgA

n ) which is

�n⌫ =
↵sCA

2⇡
ln
⇣�t

m2

⌘

. (161)

Again mixing plays a key role in obtaining this result. In particular, the graph that contributes

the ln(�t) in the anomalous dimension for OqA
n is initiated by gluons, and enters through �gqn⌫ .

Next we turn to the soft anomalous dimensions. For the operators OqnA
s and OgnA

s the con-

tributing diagrams are very similar to our analysis of the n-collinear operators above. For this

reason we do not bother to give a detailed discussion of the various diagrams. The key di↵erence

is that for the soft graphs the rapidity regulator appears as |n̄ · k � n · k|�⌘ rather than |n̄ · k|�⌘,

which reverses the sign of the 1/⌘ poles. For this reason, the final rapidity anomalous dimension

for the relevant combination of single color index soft operators, (OqnA
s +OgnA

s ) has the opposite

sign to the n-collinear case,

�sn⌫ = �↵sCA

2⇡
ln
⇣�t

m2

⌘

. (162)
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between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

X

ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual

soft and collinear sectors,

µ
d

dµ
(OqA

n +OgA
n ) = 0 , µ

d

dµ
(OqnA

s +OgnA
s ) = 0 , (144)

which implies even simpler relations for the µ anomalous dimensions,

�nµ ⌘ �qqnµ + �gqnµ = �ggnµ + �qgnµ = 0 , �snµ ⌘ �qqsnµ + �gqsnµ = �ggsnµ + �qgsnµ = 0 . (145)

Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of

(IR divergent)

virtual anom.dim. is Regge exponent for gluon

obtain the relation between the renormalized collinear operators evaluated at two di↵erent rapid-

ity scales ⌫:

(OqA
n +OgA

n )(⌫
1

) =
⇣⌫

0

⌫
1

⌘��n⌫

(OqA
n +OgA

n )(⌫
0

) . (7.78)

Taking ⌫
1

=
p�t and ⌫

0

=
p
s we can now connect the collinear operator to the scale ⌫ =

p
s

where logarithms in its amplitude are minimized,

(OqA
n +OgA

n )(⌫ =
p�t) =

⇣ s

�t

⌘��n⌫/2
(OqA

n +OgA
n )(⌫ =

p
s) . (7.79)

For OjA
n̄ we have the same rapidity anomalous dimension equation with �n̄⌫ = �n⌫ , and hence

the same resummed result, namely

(OqA
n̄ +OgA

n̄ )(⌫ =
p�t) =

⇣ s

�t

⌘��n⌫/2
(OqA

n̄ +OgA
n̄ )(⌫ =

p
s) . (7.80)

Putting these results together the leading logs are summed in the operator Oij
nsn̄ by,

X

i,j=q,g

Oij
nsn̄(⌫ =

p�t) (7.81)

= (OqA
n +OgA

n )(⌫ =
p�t)

1

P2

?
OAB

s (⌫ =
p�t)

1

P2

?
(OqB

n̄ +OgB
n̄ )(⌫ =

p�t)

=
⇣ s

�t

⌘��n⌫

(OqA
n +OgA

n )(⌫ =
p
s)

1

P2

?
OAB

s (⌫ =
p�t)

1

P2

?
(OqB

n̄ +OgB
n̄ )(⌫ =

p
s) .

For the renormalized operators on the right-hand side there are no large logarithms in their

matrix elements, since they are evaluated at the scales ⌫ which minimize their respective rapidity

logarithms. (If we had instead started the evolution at ⌫ =
p
s then there would be no evolution

for the collinear operators, and the soft operator’s evolution would generate this same result.)

The factor of ( s
�t)

��n⌫ in Eq. (7.81) is the standard Reggeized gluon result, where ↵g = ��n⌫

is the gluon Regge exponent. At the leading logarithmic resummed order we have this same factor

for quarks and gluon channels. At higher order there are distinctions between the channels, see

for example [50], in particular factors of ( st )
��n⌫ also appear. Since ( st )

��n⌫ = ( s
�t)

��n⌫ei⇡�nµ the

two factors di↵er only at next-to-leading logarithmic order.

7.3 One Loop Matching in SCET
I

In this section we repeat the matching calculation carried out in Sec. 7.1, but in the theory SCET
I

.

Although our focus in the majority of this paper is on SCET
II

, we mentioned in Sec. 5.1 that,

prior to the BPS field redefinition, the Glauber Lagrangian for SCET
I

is identical in form to that

for SCET
II

, and only di↵ers in the form of its 0-bin subtractions. This section will serve to check

at one-loop that we have the proper form of the Glauber Lagrangian for SCET
I

, and highlight

– 89 –

gives:
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Forward Scattering & BFKL

Expand time evolution,  do soft-collinear factorization term by term:

Consider (linearized) forward scattering with one Glauber exchange, 
    but all orders in other interactions (eg. leading logs):
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Written as a path integral the full time evolution operator in SCET is

U(a, b;T ) =

Z

⇥D�
⇤

exp
h

i

Z T

�T
d4x

�L(0)
nn̄s(x) + LII(0)

G (x)
�

i

, (192)

where L(0)
nn̄s = L(0)

n +L(0)
n̄ +L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b indicate the

field boundary conditions at time t = �T,+T , and [D�] is a short hand to indicate the functional

integral over all relevant SCET soft and collinear fields. We will only be interested in the large T

limit, T ! 1(1� i0). All these Lagrangian terms are leading order in the power counting. Using

Eq. (55) we can expand the Glauber part of the time evolution operator as

T exp i

Z

d4xLII(0)
G (x) =



1 + i

Z

d4y1 LII(0)
G (y1) +

i2

2!

Z

d4y1 d
4y2 LII(0)

G (y1)LII(0)
G (y2) + . . .

�

(193)

= 1 + T
1
X

k=1

1
X

k0=1

 k
Y

i=1

Z

[dx±i ]
Z

d2q?i

q2?i

⇥OqAi
n (q?i) +OgAi

n (q?i)
⇤

(xi)

�

⇥
 k0
Y

i0=1

Z

[dx±i0 ]
Z

d2q?i0

q2?i0

⇥OqBi0
n̄ (q?i0) +OgBi0

n̄ (q?i0)
⇤

(xi0)

�

⇥O
A1·Ak,B1···Bk0
s(k,k0) (q?1, . . . , q?k0)(x1, . . . , xk0)

⌘ 1 +
1
X

k=1

1
X

k0=1

U(k,k0) ,

where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (193) we have organized

the expansion according to the number k of n-collinear operators, and number k0 of n̄-collinear

operators, rather than according to the number of insertions of the Glauber Lagrangian. Any

symmetry factors like 1/k! are included in the definition of O
A1·Ak,B1···Bk0
s(k,k0) .

For example, the first nontrivial term with k = k0 = 1 is

U(1,1) = i

Z

[dx±][dx0±]
X

k±

Z

d2q?
q2?

d2q0?
q02?

⇥OqA
n,k�(q?) +OgA

n,k�(q?)
⇤

(x̃)
⇥OqB

n̄,k+
(q0?) +OgB

n̄,k+
(q0?)

⇤

(x̃0)

⇥OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) . (194)

Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)
G , as well as a T-product term from the product OinA

s Ojn̄B
s that

comes from two insertions of LII(0)
G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (195)

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T
X

i,j=q,g

OinA
s,�k�(q?)(x̃) Ojn̄B

s,�k+
(�q0?)(x̃

0) .

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T eix̃
0·P̂ X

i,j=q,g

OinA
s,�k�(q?)(x̃�x̃0) Ojn̄B

s,�k+
(�q0?)(0)e

�ix̃0·P̂ .
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Here �2(x̃� x̃0) = 2�(x+ � x0+)�(x� � x0�). Note that we have flipped the q0? sign when defining

OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) so that both q? and q0? are incoming. For the collinear operators in Eq. (194)

the O(�) soft momenta k± are residual to the respective large collinear momenta, but show us how

these soft momenta are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by having a

single U(1,1) on each side of the cut. We take color singlet initial states hpp0|, such as proton-

proton or quarkonia-quarkonia scattering, where one hadron is n-collinear and n̄-collinear. The

corresponding non-trivial transition matrix is

T(1,1) =
1

V4

X

X

⌦

pp0
�

�U †
(1,1)

�

�X
↵⌦

X
�

�U(1,1)

�

�pp0
↵

, (196)

where the volume factor V4 = (2⇡)4�4(0) must be removed since each of these matrix elements

gives a momentum conserving �-function. Since we are working order by order in the Glauber

Lagrangian these matrix elements can be factorized into soft and collinear components. For the

n-collinear matrix element inside hX|U(1,1)|pp0i we have

⌦

Xn

�

�OiA
n,k�(q?)(x̃)

�

�p
↵

= �(x+)
⌦

Xn

�

�

⇥OiA
n (x�)�0,n̄·P†+k��(q? � P†

?)
⇤

�

�p
↵

= �(x+)�(q? � p?Xn
)�(p� � p�Xn

)
⌦

Xn

�

�OiA
n (x�)

�

�p
↵

. (197)

Since the n-collinear matrix element has O(�0) p�-momenta, there is no dependence on the residual

momenta k� ⇠ �, or p�r ⇠ �2, which gives rise to the �(x+). The momentum dependent �-functions

arise from the conservation of momenta in the matrix element. Since �(p� � p�Xn
)�(p� � p�Xn

) =

�(0)�(p� � p�Xn
), one part of the volume factor, V1 = 2⇡�(0), will appear in the squared collinear

matrix element. Therefore

1

V1

X

Xn

D

p
�

�

�

X

j=q,g

OjA0

n,k0�(q
00
?)(x̃

00)
�

�

�

Xn

ED

Xn

�

�

�

X

i=q,g

OiA
n,k�(q?)(x̃)

�

�

�

p
E

= �AA0
2�(x+)�(x00+)�2(q? � q00?)Cn(q?, p�, x�, x00�) ,

1

V1

X

Xn̄

D

p0
�

�

�

X

j=q,g

OjB0

n̄,k0+(q
000
?)(x̃

000)
�

�

�

Xn̄

ED

Xn̄

�

�

�

X

i=q,g

OiB
n̄,k+(q

0
?)(x̃

0)
�

�

�

p0
E

= �BB0
2�(x000�)�(x0�)�2(q0? � q000?)Cn̄(q

0
?, p

0+, x0+, x000+) , (198)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. We see

that the matrix elements of the collinear operators gives only one combination of the color indices.

Since the soft state |Xsi has zero residual O(�2) momenta, using Eq. (195) the matrix element

of OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) is only a function of x̃ � x̃0. The soft fields only depend on x̃ and x̃0 to

conserve the residual O(�2) momenta, and not otherwise through any of the soft Feynman rules.
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Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (199)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (198) removes all the x-integrals in T(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (200)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2x

0+·P̂ X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2x

0+·P̂ .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V2

1

q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
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(201)

where V2 = (2⇡)2�2(0) includes the remaining part of the volume factor. The contraction of color

indices and ? �-functions from the collinear sectors in Eq. (198) allows us to reduce the form of

the required soft function further to

SG(q?, q0?) =
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d2q00?d
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The �AA0
�BB0

contraction in Eq. (202) implies that the combined Glauber exchanges on either side

of the cut are in a color singlet state. In some applications one may be required to consider a

color-octet configuration and/or a ?-momentum configuration with q? 6= q̃? and q0? 6= q̃0?, but we

will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the Glauber

exchange is given by

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (203)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (198). Finally, we note that conjugation relation in Eq. (78) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
?, q?)

�

�

�

n$n̄
. (204)

= . . .
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by

⌦
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0
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↵

= �i 8⇡↵s(µ) �
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? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace

q� q�

q�� q��

after rapidity renormalization:
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Since we integrate over soft ±-momenta to define SG(q?, q0?) it only has the trivial n · n̄ = 2

dependence on the collinear directions that show up in the soft operator Wilson lines, and hence

its definition implies that it is a symmetric function

SG(q?, q0?) = SG(q
0
?, q?) . (205)

The result in Eq. (203) gives a factorized form for the forward scattering process at lowest order

in the Glauber exchange operators, but to all orders in the soft and collinear Lagrangians, L(0)
S

and L(0)
n,n̄. Therefore the functions Cn(q?), Cn̄(q0?), and SG(q?, q0?) each have non-trivial series

in ↵s. In the next two sections, Secs. VB and VC we will consider the renormalization of the

lowest order transition amplitude T(1,1), which at leading logarithmic order simply involves the

rapidity renormalization of these soft and collinear functions, and only requires O(↵s) real and

virtual calculations. For the full scattering corrections at this same order in ↵s also occur from a

term with more insertions of the Glauber operators:

T(2,1) + T(1,2) =
1
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At this order in ↵s we can either contract both the Oi
nO

i
n and Oj

n̄O
j
n̄ in U(2,2) to give a Glauber

box diagram as in Fig. 11 or we could attach the two forward collinear lines in each of Oi
nO

i
n

and Oj
n̄O

j
n̄ to di↵erent partons in the incoming hpnp0̄n| state. Neither of these contributions has

a logarithmic rapidity divergence, and hence it su�ces to consider just T(1,1) when deriving the

leading-logarithmic renormalization equations.

Introducing the rapidity cuto↵ ⌫ and renormalized collinear and soft functions we have

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) . (207)

In the next section we derive the leading-logarithmic evolution equation for the soft function

SG(q?, q0?, ⌫) and show that it is the BFKL equation. Then in Sec. VC we will derive the BFKL

equations for Cn(q?, p�, ⌫) and Cn̄(q0?, p
0+⌫) by using renormalization group consistency. We will

further discuss the more general set of matrix elements for the U(k,k0) case, where we allow an

arbitrary number of insertions of the forward scattering operators, in Sec. VD below.

B. BFKL Equation for the Soft Function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the

tension between the collinear modes whose natural rapidity scale is ⌫c ⇠
p
ŝ and the soft mode for

which ⌫s ⇠ p�t. Thus the large logs can not be minimized with a single choice of the rapidity

scale ⌫ in the SCET matrix elements. Since the final result is independent of which ⌫ we choose, we

will take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs
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collinear and soft functions

the large T limit, T ! 1(1 � i0). All these Lagrangian terms are leading order in the power

counting. Using Eq. (5.37) we can expand the Glauber part of the time evolution operator as
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where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (8.2) we have organized

the expansion according to the number of n-collinear operators k, and number of n̄-collinear

operators k0, rather than according to the number of insertions of the Glauber Lagrangian. Any

symmetry factors like 1/k! are included in the definition of O
A

1

·Ak,B1

···Bk0
s(k,k0) .

For example, the first nontrivial term with k = k0 = 1 is

U
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Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)

G , as well as a T-product term from the product OinA
s Ojn̄B

s that

comes from two insertions of LII(0)

G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃
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Here �2(x̃�x̃0) = 2�(x+�x0+)�(x��x0�). Note that we have flipped the q0? sign inOAB
s,�k±(q?,�q0?)

when defining OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) so that both q? and q0? are incoming. For the collinear opera-

tors in Eq. (8.3) the O(�) soft momenta k± are residual to the respective large collinear momenta,

but show us how these soft momenta are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by having a

single U
(1,1) on each side of the cut. Since here the amplitude is linear in the number of Glauber
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Consider rapidity renormalization for soft function that appears here:
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (210) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (325).

For the soft virtual corrections we have contributions from the flower and eye graphs, which we

must incorporate at a level where we have not yet performed the k? loop integration. To obtain

results for
⌦
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soft loop integrands in Sec. IVA in Eqs. (112) and (184) and include a (2⇡)2�(~q? + ~q 0
?). Keeping

only the rapidity divergent terms we have
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To obtain the third equality we shifted ~k? ! ~k? � ~q?/2 and then simplified the integrand, and to

obtain the last line we partial fractioned the numerator and dropped integrands that are odd in ~k?
and which vanish in dimensional regularization because they are power law divergent. Similarly,

for the flower graph we have
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Combining Eqs. (213) and (214) we see that the self contraction of Wilson lines in the soft flower

graph cancels one of the terms in the eye-graph, leaving
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The contribution coming from the soft Wilson line and the time ordered product can be combined

to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (325). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly

evolution 
given by

BFKL equation
(see also work 
by S. Fleming)

take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the

sum of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be

relevant for our RGE analysis.

We will be working in the limit where (�t) � ⇤2

QCD

so that we may treat Glauber exchange

perturbatively, but do not attempt to factorize these two infrared scales in the EFT explicitly.

To sum the logarithms at leading logarithmic order (LL) we only need to consider the k = k0 = 1

term in Eq. (8.2), and this Glauber operator e↵ectively acts like an external current. This term

yielded the factorization formulae in Eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming q? and

q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (8.9), and this lowest order contribution comes from OAB

s (q?,�q0?)

which was defined in Eq. (5.38). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2

c � 1 and the

volume factor V
2

= (2⇡)2�2(0).

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (8.11). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. 5.2.2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing

over polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.

The results up to O(↵s) from Eqs. (8.18,8.21,8.25) can be summarized as yielding the O(↵s)

rapidity divergent correction to the bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution

SG(~q?, ~q 0
?, ⌫) =

Z

d2k? ZSG
(q?, k?) Sbare

G (k?, q0?) . (8.27)

To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
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to give the full O(↵s) virtual correction to SG(q?, q0?)

2

S

q

q'
+ 2

S

q

q'

(8.25)

= �2(8⇡↵s)2↵s

~q 2

?
CA�

ABw2�
⇣⌘

2

⌘

Z

d�2k? (~q 2

?)
2

~k 2

? (~k?�~q?)2
(2⇡)2�(~q?+~q 0

?)

= �CA↵s

2⇡2

w2�
⇣⌘

2

⌘

Z

d2k?
~q 2

?
~k 2

?(~k? � ~q?)2
S(0)

G (q?, q0?) ,
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factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft
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where the anomalous dimension is given by

�SG
(q?, q0?) = �
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(k?, q0?) . (8.31)

Inserting the one-loop result from Eq. (8.28) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives
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Note that this anomalous dimension is not just a function of the di↵erence q?� q0?, but it is easy

to see from Eq. (8.32) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (8.33)

The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,
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The BFKL equation is often [99–101] written in terms of the derivative of a rapidity, Y =

ln(⌫2/µ2) ⇠ ln s. The fact that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on

the right-hand side of Eq. (8.34). Note that in our SCET calculation, the fact that Eq. (8.34) is

obtained for the all orders soft function SG (rather than just the one-loop soft function) follows

immediately from the structure of the e↵ective field theory operators and the multiplicative form

of the rapidity renormalization in Eq. (8.27). In classic derivations of the BFKL equation, this

step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction with Glaubers

was considered earlier by Fleming in Ref. [40]. Although the idea of carrying out rapidity renor-

malization of a squared matrix element of soft fields is common between our two calculations,

there are also a few di↵erences, both on the conceptual and calculation sides. The scattering

operator considered in [40] is Onn̄
G = (�̄n̄S

†
n̄T

An/
2

Sn̄�n̄)
1

P2

?
(�̄nS

†
nT a n̄/

2

Sn�n), which di↵ers from our

Oqq
nsn̄. In particular, unlike Oqq

nsn̄, the operator Onn̄
G is not soft gauge invariant in SCET

II

due to

the presence of the 1

P2

?
, which does not allow the soft gauge transformation factors from the two

sides to cancel. This distinction also causes di↵erences for the calculations. In the soft part of our

Regge calculation the t-dependence is induced by the time ordered product of two collinear-soft

scattering operators, through the soft eye diagram in Fig. 21c, whereas Oqq
nsn̄ contributes the

additional flower diagram. In [40] the soft part of the Regge result calculated in Feynman gauge

comes solely from Onn̄
G (the collinear calculations, which require both quark and gluon operators,
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Consider rapidity renormalization for soft function that appears here:
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (210) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have

q

q' SS
= (8⇡↵s)

24↵sCA�
AAw2�

⇣⌘

2

⌘

Z

d�2k?
(~k? � ~q?)2 ~q 2

? ~k 2
?
(2⇡)2�2(~k? � ~q? � ~q 0

?)

= (8⇡↵s)
24↵sCA�

AAw2�
⇣⌘

2

⌘

Z

d�2k?
~k 2
? ~q 2

? (~k? � ~q?)2
(2⇡)2�2(~k? + ~q 0

?)

=
CA↵s

⇡2
w2�

⇣⌘

2

⌘

Z

d2k? ~k 2
?

(~k? � ~q?)2 ~q 2
?
S(0)
G (k?, q 0

?) , (212)

where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (325).

For the soft virtual corrections we have contributions from the flower and eye graphs, which we

must incorporate at a level where we have not yet performed the k? loop integration. To obtain

results for
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soft loop integrands in Sec. IVA in Eqs. (112) and (184) and include a (2⇡)2�(~q? + ~q 0
?). Keeping

only the rapidity divergent terms we have
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To obtain the third equality we shifted ~k? ! ~k? � ~q?/2 and then simplified the integrand, and to

obtain the last line we partial fractioned the numerator and dropped integrands that are odd in ~k?
and which vanish in dimensional regularization because they are power law divergent. Similarly,

for the flower graph we have
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Combining Eqs. (213) and (214) we see that the self contraction of Wilson lines in the soft flower

graph cancels one of the terms in the eye-graph, leaving
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The contribution coming from the soft Wilson line and the time ordered product can be combined

to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (325). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly

evolution 
given by

BFKL equation

take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the

sum of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be

relevant for our RGE analysis.

We will be working in the limit where (�t) � ⇤2

QCD

so that we may treat Glauber exchange

perturbatively, but do not attempt to factorize these two infrared scales in the EFT explicitly.

To sum the logarithms at leading logarithmic order (LL) we only need to consider the k = k0 = 1

term in Eq. (8.2), and this Glauber operator e↵ectively acts like an external current. This term

yielded the factorization formulae in Eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming q? and

q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (8.9), and this lowest order contribution comes from OAB

s (q?,�q0?)

which was defined in Eq. (5.38). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2

c � 1 and the

volume factor V
2

= (2⇡)2�2(0).

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (8.11). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. 5.2.2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing

over polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.

The results up to O(↵s) from Eqs. (8.18,8.21,8.25) can be summarized as yielding the O(↵s)

rapidity divergent correction to the bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution

SG(~q?, ~q 0
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
d

d⌫
SG(q?, q0?, ⌫) =

Z

d2k? �SG
(q?, k?) SG(k?, q0?, ⌫) , (8.30)
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where the anomalous dimension is given by

�SG
(q?, q0?) = �

Z

d2k?ZSG
(q?, k?) ⌫

d

d⌫
Z�1

SG
(k?, q0?) . (8.31)

Inserting the one-loop result from Eq. (8.28) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives

�SG
(q?, q0?) =

2CA↵s(µ)

⇡2



1

(~q? � ~q 0
?)2

� �2(~q? � ~q 0
?)

Z

d2k?
~q 2

?
2~k 2

?(~k? � ~q?)2

�

. (8.32)

Note that this anomalous dimension is not just a function of the di↵erence q?� q0?, but it is easy

to see from Eq. (8.32) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (8.33)

The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,

⌫
d

d⌫
SG(q?, q0?, ⌫) =

2CA↵s(µ)

⇡2

Z

d2k?


SG(k?, q0?, ⌫)
(~k? � ~q?)2

� ~q 2

? SG(q?, q0?, ⌫)
2~k2?(~k? � ~q?)2

�

. (8.34)

The BFKL equation is often [99–101] written in terms of the derivative of a rapidity, Y =

ln(⌫2/µ2) ⇠ ln s. The fact that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on

the right-hand side of Eq. (8.34). Note that in our SCET calculation, the fact that Eq. (8.34) is

obtained for the all orders soft function SG (rather than just the one-loop soft function) follows

immediately from the structure of the e↵ective field theory operators and the multiplicative form

of the rapidity renormalization in Eq. (8.27). In classic derivations of the BFKL equation, this

step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction with Glaubers

was considered earlier by Fleming in Ref. [40]. Although the idea of carrying out rapidity renor-

malization of a squared matrix element of soft fields is common between our two calculations,

there are also a few di↵erences, both on the conceptual and calculation sides. The scattering

operator considered in [40] is Onn̄
G = (�̄n̄S

†
n̄T

An/
2

Sn̄�n̄)
1

P2

?
(�̄nS

†
nT a n̄/

2

Sn�n), which di↵ers from our

Oqq
nsn̄. In particular, unlike Oqq

nsn̄, the operator Onn̄
G is not soft gauge invariant in SCET

II

due to

the presence of the 1

P2

?
, which does not allow the soft gauge transformation factors from the two

sides to cancel. This distinction also causes di↵erences for the calculations. In the soft part of our

Regge calculation the t-dependence is induced by the time ordered product of two collinear-soft

scattering operators, through the soft eye diagram in Fig. 21c, whereas Oqq
nsn̄ contributes the

additional flower diagram. In [40] the soft part of the Regge result calculated in Feynman gauge

comes solely from Onn̄
G (the collinear calculations, which require both quark and gluon operators,
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Plugging Eqs. (228) and (229) into Eq. (227) we then have

0 =

Z

d2q?d2q0?d
2k?

h

Cn(k?, p�, ⌫)�C(q?, k?)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) (230)

+ Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)�C(q
0
?, k?)Cn̄(k?, p0+, ⌫)

+
1

2
Cn(q?, p�, ⌫)�SG

(q?, k?)SG(k?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫)

+
1

2
Cn(q?, p�, ⌫)SG(q?, k?, ⌫)�SG

(k?, q0?)Cn̄(q
0
?, p

0+, ⌫)
i

.

Using our ability to swap around the three integration variables we see that this equation can only

be satisfied for arbitrary Cn, SG, and Cn̄ functions if �C(q?, k?) = �1
2�SG

(k?, q?) and �C(q0?, k?) =

�1
2�SG

(q0?, k?), which implies that �C is also a symmetric function and is given by

�C(q?, q0?) = �1

2
�SG

(q?, q0?) . (231)

Therefore the RGE equations for Cn and Cn̄ are also given by the BFKL equation. Writing this

out explicitly we have

⌫
d

d⌫
Cn(q?, p�, ⌫) = �CA↵s

⇡2

Z

d2k?


Cn(k?, p�, ⌫)
(~k? � ~q?)2

� ~q 2
? Cn(q?, p�, ⌫)
2~k2?(~k? � ~q?)2

�

, (232)

with the same form of BFKL equation for Cn̄(q?, ⌫). Note that there is a factor of (�1/2) for

the BFKL equations for the collinear functions as compared to the soft function. The sign comes

from the fact that they run in the opposite direction in rapidity space, from ⌫ ' p� =
p
s down

to ⌫ ' p
t, and the 1/2 comes from the fact that two collinear functions must balance against a

single soft function.

D. Multiple Insertions: Factorization of Glauber Lagrangian Interactions

In this section we consider how multiple insertions of the Glauber Lagrangian impacts renor-

malization and observables. Recall

exp iL(0)II
G =

1
X

k=1

1
X

k0=1

 k
Y

i=1

(OqAi
n +OgAi

n )

� k0
Y

i0=1

(O
qBi0
n̄ +O

gBi0
n̄ )

�

O
A1·Ak,B1···Bk0
s(k,k0) (233)

NOTE(Discuss number of ?-convolutions, and the renormalization of individual soft and

collinear functions. Can ? integrals diverge? It appears that this is a necessary

condition for terms T(k,k0) with di↵erent k, k0 to mix.)

VI. PROPERTIES OF GLAUBER OPERATORS IN LOOP GRAPHS

In this section we consider various properties of Glauber gluons. In Secs. VIA and VIB we

consider Glauber gluon exchange in the context of a hard vertex that either annihilates or scatters

�1
2
(BFKL)
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As anticipated, comparing Eq. (284) to Eq. (278) we see that this is the second term in the

expansion of an exponential.

Next consider the double box diagram. Again performing the contour integrals over the energies,

and then using Eq. (280) we find

n

n

n

n

q+

pk +

pk -

3

41

1

k -2 k1 k2

pk - 42

pk + 32

-k1 = �8ig6Snn̄
(3) I

(2)(q?)
Z

d�kz1 d�kz2 |2kz1|�⌘ |2kz1 � 2kz2|�⌘ |2kz2|�⌘⌫3⌘

4(�kz1 +�1 + i0)(�kz2 +�2 + i0)

= 2ig6Snn̄
(3) I

(2)
? (q?)

Z 1

�1
d�kz1 d

�kz2 dx dy dz d↵1 d↵2 ✓(↵1)✓(↵2)
⇣

⌘
⌘

2

⌘3|xyz|�1+⌘

⇥ eik
z
1xei(k

z
2�kz1)ye�ikz2zei↵1(kz1+�1)ei↵2(kz2+�2)

= 2ig6Snn̄
(3) I

(2)
? (q?)

⇣

⌘
⌘

2

⌘3
Z 1

�1
dx dy dz ✓(y � x)✓(z � y) |xyz|�1+⌘ ei(y�x)�1ei(z�y)�2

= �2Snn̄
(3) i

3g6 I(2)? (q?)
1

3!

h

1 +O(⌘)
i

, (285)

where to obtain the third equality we performed the kz1 and kz2 integrals to get �(x� y + ↵1)�(y �
z + ↵2) and then performed the ↵1 and ↵2 integrals. Again due to the ⌘3 term in the prefactor

only the leading ultraviolet divergent from the dxdydz integral contributes, which comes from the

limit x, y, z ! 0 where the �1 = �1(k1?) and �2 = �2(k2?) dependence drops out. In this

limit we can either do the integral directly to give the 1/3!, or note that we can symmetrize as

✓(z > y > x) ! [✓(z > y > x)+✓(y > z > x)+✓(z > x > y)+✓(x > z > y)+✓(x > y > z)+✓(y >

x > z)]/(3!) = 1/(3!). Everywhere in Eq. (285) the ? integral is contained in

I(2)? (q?) =
Z

d�d�2k1?d�d�2k2? (◆✏µ2✏)3

(~k1? + ~q?)2(~k2? � ~k1?)2 ~k 2
2?

. (286)

Performing the ? Fourier transform of this integral using Eq. (281) gives

n

n

n

n

q+

pk +

pk -

3

41

1

k -2 k1 k2

pk - 42

pk + 32

-k1 =)
F.T.?

�2Snn̄ 1

3!

⇥

i�(b?)
⇤3

, (287)

which is the third term in the expansion of the exponential. This naturally generalizes to the case

of the N -loop box graph with (N + 1)-rungs. Doing the energy integrals by contours and using

Eq. (280) we have

n

n

n

n

q+

pk +

pk -

3

41

1

k -2 k1 kN

pk - 4N

pk + 3N

k1 -k -N kN-1
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= i(�2g2)N+1Snn̄
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�

�

�⌘
⌫N⌘
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�2Snn̄ 1
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, (288)

where to take the final Fourier transform we used Eq. (281) for the integral

I(N)
? (q?) =

Z

d�d�2k1? · · · d�d�2kN? (◆✏µ2✏)N+1

(~k1? + ~q?)2(~k2? � ~k1?)2 · · · (~kN? � ~k(N�1)?)2 ~k 2
N?

. (289)

The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2
N (q?) = �2Snn̄

�

G̃(b?)� 1
�

(290)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so

�(b?) = CF g2(µ)

Z

d�2q?
~q 2
? +m2

ei~q?·~b? = �2CF ↵s(µ) ln

✓ |~b?|me�E

2

◆

. (293)
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where to take the final Fourier transform we used Eq. (281) for the integral
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The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give
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where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so

�(b?) = CF g2(µ)
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Sum up Glauber Boxes

gives classic eikonal scattering result:
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where to take the final Fourier transform we used Eq. (281) for the integral
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The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give
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where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so

�(b?) = CF g2(µ)
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where to take the final Fourier transform we used Eq. (9.9) for the integral

I(N)

? (q?) =
Z

d�d�2k
1? · · · d�d�2kN? (◆✏µ2✏)N+1

(~k
1? + ~q?)2(~k2? � ~k
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(N�1)?)2 ~k 2

N?
. (9.17)

The final result in Eq. (9.16) is the (N+1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2

N (q?) =
�

G̃(b?)� 1
�

2Snn̄ (9.18)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (9.19)

and where the the color matrix phase �(b?) defined in Eq. (9.1) is a Hermitian matrix. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (9.20)

In SCET the results for the sum of Glauber boxes given by Eqs. (9.19) and (9.20) are valid

for any color channel, simply taking TA ⌦ T̄A ! TA
1

⌦ TA
2

in �(b?). The same (ei�(b?) � 1)

result is also obtained if we consider the sum of box diagrams for the soft-n two-parton scattering

since the Glauber light cone momenta will still be parametrically smaller then corresponding soft

momentum.

It is interesting to pause to consider physically what the |2kzj |�⌘ factors are doing in the

N -loop box graph in Eq. (9.16). At finite ⌘ this regulator implies that the Glauber exchanges

are not instantaneous in the corresponding longitudinal position. (They are still instantaneous in

time.) Diagrammatic calculations are easy to interpret in position space, where these regulators

were transformed to factors of |xj |�1+⌘. Each of these longitudinal coordinates xj corresponds to

the location of one of the Glauber exchanges. Hence, they spread out with a string of increasing

longitudinal coordinates x
1

< x
2

< . . . < xN+1

, where the ✓-functions inducing these inequalities

are provided by the collinear propagators between the Glauber exchanges. However each position

space regulator also comes with a factor of (⌘⌘/2), and hence only the most divergent part

of the xj-integrals contributes to the final result. This divergent contribution comes from the
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Fourier transform     :

We begin by noting that the argument given in Sec. 5.2.1 for the vanishing of the one-loop

cross box holds for all non-ladder type topologies. Rapidity divergences are regulated by factors

|2kz
1

|�⌘ · · · |2kzN |�⌘, so we can consider the k0i integrals to be done by contours without concern

that the remaining integral might be unregulated. For any diagram with one or more crossed

Glauber exchange lines there is one or more k0i integrals for which the poles are all on the same

side of the real axis (and converge at 1). Thus, all diagrams with crossed Glauber rungs vanish

with our rapidity regulator, and we only need to consider the sum of the ladder graphs.

To show exponentiation we will manipulate an N -Glauber exchange diagram into the product

of single exchanges with a factor of 1/N !. The product form arises when we transform from q?
to the impact parameter space b?. In impact parameter space we will see that the amplitude

from iterated Glauber exchange is simply determined by a phase, given by the Fourier transform

of the 1/q2? potential between particles 1 and 2:
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The result is a matrix in the color space with TA
1

and TA
2

being the color matrix generators that

commute with each other, and act on particle 1 and 2 respectively (for a review of this color

matrix notation see e.g. [87]). Recall that d = 4� 2✏ and that ◆✏ = e✏�E/(4⇡)✏ is our notation for

the factor that enters with each µ2✏ when the coupling is in the MS scheme. The �(�✏) infrared

divergence will be discussed further at the end of this section.

The exponentiation results derived below hold equally well when iterating Glauber exchange

potentials between quark-quark, quark-antiquark, quark-gluon, and gluon-gluon channels, and

for cases where the scattering particles are n-n̄, n-s, or n̄-s. To be definite we consider quark-

antiquark n-n̄ scattering, where
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For convenience we define the Fourier transform operation as the application of the integral:
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Performing the ? Fourier transform of this integral using Eq. (9.9) gives
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which is the third term in the expansion of the exponential.

This naturally generalizes to the case of the N -loop box graph with (N + 1)-rungs. Doing

the energy integrals by contours and using Eq. (9.7) we have
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where to take the final Fourier transform we used Eq. (9.9) for the integral
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The final result in Eq. (9.16) is the (N+1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give
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where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (9.19)

and where the the color matrix phase �(b?) defined in Eq. (9.1) is a Hermitian matrix. For

convenience we also define the momentum space Glauber function
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In SCET the results for the sum of Glauber boxes given by Eqs. (9.19) and (9.20) are valid

for any color channel, simply taking TA ⌦ T̄A ! TA
1

⌦ TA
2

in �(b?). The same (ei�(b?) � 1)

result is also obtained if we consider the sum of box diagrams for the soft-n two-parton scattering

since the Glauber light cone momenta will still be parametrically smaller then corresponding soft

momentum.

It is interesting to pause to consider physically what the |2kzj |�⌘ factors are doing in the

N -loop box graph in Eq. (9.16). At finite ⌘ this regulator implies that the Glauber exchanges

are not instantaneous in the corresponding longitudinal position. (They are still instantaneous in

time.) Diagrammatic calculations are easy to interpret in position space, where these regulators

were transformed to factors of |xj |�1+⌘. Each of these longitudinal coordinates xj corresponds to

the location of one of the Glauber exchanges. Hence, they spread out with a string of increasing

longitudinal coordinates x
1

< x
2

< . . . < xN+1

, where the ✓-functions inducing these inequalities

are provided by the collinear propagators between the Glauber exchanges. However each position

space regulator also comes with a factor of (⌘⌘/2), and hence only the most divergent part

of the xj-integrals contributes to the final result. This divergent contribution comes from the
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FIG. 30. a) Active-Active interaction for the hard scattering correlator in Eq. (314). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.

alone it is far from a proof of factorization, even in the Abelian case. What this resummation does

do however is to illuminate the semi-classical nature of the physics.

Notice that for these spectator-spectator interactions, as opposed to the active-active case pre-

viously discussed in Sec. VIA, that there is no analogous diagrams in SCET where the Glauber

gluons are soft. If one of the Glauber gluons became soft then it would knock all other fermion

lines in the end loop integral o↵shell, and hence such interactions are power suppressed. There

are also no diagrams where a spectator-spectator Glauber exchange is replaced by and n-collinear

or n̄-collinear gluon, again these are power suppressed. Thus once we consider matrix elements

involving spectators lines the Glauber mode is necessary to reproduce the full theory result.

B. Active-Active and Soft Overlap

Next we will consider Glauber interactions between two partons that participate in the hard

scattering, namely active-active terms. In Secs. VIA and VIB we showed that in hard scattering

graphs without spectators, such Glauber interactions give the same contributions as the Glauber

zero-bin subtractions of soft Wilson line graphs. The Glauber exchange could therefore be absorbed

into these soft graphs as long as the correct directions for the soft Wilson lines are employed. In

this section we will demonstrate that all the results and conclusions about active-active Glauber

interactions from those sections carry over to the case when we include the interpolating fields for

the incoming hadrons.

The general reason for this can be discussed by looking at the example given in Fig. 30. In

any purely active-active loop graph with spectators present, the hadron interpolating fields are

always external to the loops. From the n- and n̄-collinear propagators that are outside of the loop,

we immediately get the same tree-level end factor E(p1?, p2?) as in Eq. (315). The only possible

changes to the calculations done in Secs. VIA and VIB are due to the fact that the active collinear

propagators entering the loops are now not onshell. This does not a↵ect any soft propagator from

a Wilson line (solid green in Fig. 30), since here only the soft gluon loop momentum appears.

This is immediate from the SCET Feynman rules, and is also clear from expanding a full-theory

propagator, since (pn + ps)2 = n̄ · pn n · ps + . . ., where the displayed leading O(�) term gives

precisely the eikonal propagator of the soft Wilson line, and the o↵shellness of the external collinear
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis
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When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct
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We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not
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= ūn�un̄
↵sCF

2⇡

�2h(✏, µ2/m2)

⌘
+ ln

µ2

⌫2

⇣1

✏
+ ln

µ2

m2

⌘

+
1

✏2
� 1

2
ln2

µ2

m2
� ⇡2

12

�

,

S(G)(Fig. 23c) = �2ig2CF ūn�un̄
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FIG. 23. One loop soft gluon and Glauber potential exchange with a Hard Scattering vertex ⌦ in SCETII.

The solid green lines denote eikonal propagators from soft Wilson lines. Graphs a) and b) are for 2-particle

production, while c) and d) involve one incoming and one outgoing particle.

two energetic particles, and demonstrate a connection with contributions from soft gluons. It

implies that the same results are obtained with or without Glauber operators as long as the correct

directions for soft Wilson lines are taken. In Sec. VIC we carry out the all order resummation of

Glauber boxes in forward scattering, demonstrating that the rapidity regulator yields an eikonal

phase. The precise connection to the semi-classical interpretation of this scattering in terms of

shock wave solutions is discussed and reviewed in Sec. VID.

A. Hard Matching: the Cheshire Glauber

In carrying out hard matching calculations from full QCD onto SCET at one, two, and even three

loops, it is known that Glauber exchange graphs are not needed to reproduce the infrared structure

of the full theory result and obtain a Wilson coe�cient that is independent of the infrared. In this

section we demonstrate that the hidden nature of Glauber exchange for calculations involving active

lines that participate in the hard scattering, is explained by the need to modify soft diagrams by

including 0-bin subtractions from the Glauber region once Glauber interactions are included in

SCET. In particular, in SCETII the Glauber exchange contribution G is also present as part of the

result from soft gluon exchange between pairs of active lines, but this soft graph also has a Glauber

subtraction, S(G), which removes this contribution. These Glauber subtractions are non-zero for

soft diagrams involving pairs of soft Wilson lines that are both outgoing or both incoming, and in

general there is a precise connection between the subtractions, active-active Glauber graphs, and

the direction of soft Wilson lines. In contrast, in SCETI the Glauber exchange contributions G

between active lines are scaleless, and are exactly canceled by the ultrasoft 0-bin subtraction on

the Glauber graph, G(U). In the remainder of this section we explore the above connections in

detail at one-loop. We will continue this discussion at higher orders in Sec. VIB.

We begin our discussion in SCETII, considering the one-loop graphs shown in Fig. 23 with a

mass IR regulator m. We take the physical momenta to be p for the n-collinear quark, and p̄ for

the n̄-collinear (anti)quark. The soft diagrams drawn here arise from the contraction between two
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FIG. 23. One loop soft gluon and Glauber potential exchange with a Hard Scattering vertex ⌦ in SCETII.
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phase. The precise connection to the semi-classical interpretation of this scattering in terms of

shock wave solutions is discussed and reviewed in Sec. VID.

A. Hard Matching: the Cheshire Glauber

In carrying out hard matching calculations from full QCD onto SCET at one, two, and even three

loops, it is known that Glauber exchange graphs are not needed to reproduce the infrared structure

of the full theory result and obtain a Wilson coe�cient that is independent of the infrared. In this
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the Glauber graph, G(U). In the remainder of this section we explore the above connections in

detail at one-loop. We will continue this discussion at higher orders in Sec. VIB.

We begin our discussion in SCETII, considering the one-loop graphs shown in Fig. 23 with a
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exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄

Z
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which
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the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the
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degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not
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can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming
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The naive loop integral with a soft gluon exchange is
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where d0 = d � 2 = 2 � 2✏. In writing down Eq. (10.3) we are using the notation where a tilde

over a symbol, such as S̃, denotes a completely unsubtracted integral, which we will refer to

as the naive or unsubtracted result. To obtain the second line of Eq. (10.3) we evaluated the

integrand by contours in k0, obtaining the first term from the pole from the relativistic propagator

k0 = �(~k 2 +m2)1/2 + i0, and the second term proportional to (i⇡) from the pole in the eikonal

propagator k0 = �kz+ i0. The result for these integrals is shown separately in the third equality,

and can be combined by introducing a (�1� i0) in the rapidity logarithm, as shown in the final

line. If we consider the Glauber zero-bin subtraction integral for this soft loop, then we have

S(G)(Fig. 28a) = �2ig2CF S
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Therefore the full result for the soft graph in a theory with Glauber exchange is given by the

result without the (i⇡) contribution

S(Fig. 28a) = S̃ � S(G) (10.5)
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To this we must then also add the result for the Glauber exchange graph in Fig. 28b, which

exactly gives the same (i⇡) term

G(Fig. 28b) = �2ig2CF S
�
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d�dk
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k0 = �(~k 2 +m2)1/2 + i0, and the second term proportional to (i⇡) from the pole in the eikonal
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To this we must then also add the result for the Glauber exchange graph in Fig. 28b, which
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Also true in the presence of additional emissions:
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Figure 29. Single soft emission graphs for an e+e� annihilation current with a soft or Glauber loop. Solid

green lines are eikonal propagators from soft Wilson lines, dashed black lines are collinear propagators,

springs are soft gluons, and Glauber exchange is a dotted red line.

Here the �s can also depend on the o↵shellness regulators. The result in Eq. (10.14) agrees with

the SCET
I

calculation with Glauber contributions in Ref. [36]. For the n-n̄ scattering graph or

n-n̄ annihilation we also have G = G(U) = 0. Therefore for all cases in SCET
I

the Glauber

graphs G = G̃ � G(U) do not contribute, and hence the result for the one-loop hard scattering

SCET graphs are the same with or without the inclusion of Glauber gluons. In this situation the

(i⇡) factors are carried by the ultrasoft diagrams. Again these factors are necessary to correctly

reproduce the hard scattering Wilson coe�cients in Eq. (10.12), which for this current are the

same in SCET
I

as in SCET
II

.

10.2 One Loop Soft Real Emission for Soft-Glauber Correspondence

We next show that the correspondence between Glauber contributions and Glauber subtractions

for soft graphs discussed in Sec. 10.1, also holds for the situation with two active quarks par-

ticipating in a hard interaction plus one soft gluon emission. In this section we only consider

SCET
II

. This soft emission case is interesting because there are three di↵erent physical situa-

tions, corresponding to an outgoing quark/antiquark pair, an incoming and then outgoing quark,
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Glauber again gives all (i�) terms here.
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Also true in the presence of additional emissions:

Glauber again gives all (i�) terms here.
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Figure 30. Single soft emission graphs for a e�p hard scattering current with a soft or Glauber loop. Of

the Glauber loop graphs displayed here, only Gep
6 is nonzero.

or an incoming quark/antiquark pair. We will refer to these as ee, ep and pp respectively, since

the underlying hard scattering would be relevant for each of these three hard collision processes.

Since our soft gluon is always outgoing, these processes involve either 3 outgoing particles, 2

outgoing and 1 incoming particle, or 1 outgoing and 2 incoming particles. The relevant diagrams

with soft or Glauber loops are shown in Figs. 29, 30, and 31. As usual, these SCET graphs

also contain subtraction contributions as in Eq. (5.50). In the case being considered here these

subtractions ensure that the soft propagators in the loop are truly soft, and hence do not give

contributions from the region where the propagators momentum becomes Glauber. Based on

the physical picture advocated in earlier sections, we could immediately determine that some of

the Glauber exchange diagrams are zero. Here we prefer to list all the diagrams and save the

discussion of this physical interpretation for determining the nonzero diagrams to the end of this

section.

The contribution of the ith diagram from Figs. 29–31 can be written as

iAchan

i = (i⇡)
g3

⇡
TA

⇣ nµ

n·k � n̄⌫

n̄·k
⌘



� 1

2
achani CA n·k n̄·k I(1)? (k?) + bchani CF I
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? � 1

2
cchani CAI

(0)

?

�

.

(10.15)

Here k is the outgoing momentum of the soft gluon which has color A and vector index µ, and
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Also true in the presence of additional emissions:

Glauber again gives all (i�) terms here.
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Figure 31. Single soft emission graphs for a pp quark annihilation current with a soft or Glauber loop.

Of the Glauber loop graphs shown here, only Gpp
1,2,3 are nonzero.

the integrals that appear are

I(0)? =

Z

d�d�2`? (◆✏µ2✏)
~̀2

? +m2

, I(1)? (k?) =
Z

d�d�2`? (◆✏µ2✏)2

(~̀2

? +m2)
⇥

(~̀? + ~k?)2 +m2

⇤

, (10.16)

to which we can also freely add a suitable IR regulator. For example, with the displayed gluon

mass m the integral I(0)? is not scaleless. The only diagram and channel dependent factors

in Eq. (10.15) are the constants achani , bchani , cchani , where i determines which Glauber or soft

diagram is being considered, and chan = ee, ep, or pp.

In Table 3 we show the results for the achani , bchani , and cchani coe�cients for the Glauber

graphs Gi for each of the three processes. We also show results for the terms we wish to compare

them to, namely the results for the Glauber subtractions S(j)
i of the soft graphs Si. As usual,

the subtractions (j) are determined by considering all possible n-n̄, s-n, and s-n̄ Glauber limits

of the soft gluon propagators (see Table 1). These subtractions are in one-to-one correspondence

with Glauber limits of the soft eikonal propagators, so we enumerate the subtractions by letting

the superscript (j) indicate which eikonal propagator(s) are taken to be near mass shell with

virtuality of order �2. For example, S(2)
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is the graph S
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with propagator 2’s momentum taken
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may
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1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-
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result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
1

n̄ · p
1

(k++n · p
1

)� (~k?+~p
1?)2 + i0

=
1

k+ ��
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+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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of hadronic interpolating fields. The generalization of these results to SCET
I

is discussed in

Sec. 11.4. Finally, we also propose a definition of spectators and active exchanges valid at any

order in perturbation theory in Sec. 11.5.

11.1 Spectator-Spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in Fig. 35. Since the

hard scattering case with MDIS

�

has only a single hadron, these SS contributions only exist for the

hard annihilation case with MDY

�

, where the two participating spectators are created by �n and

�n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and our routing for

incoming and outgoing external momentum is shown in Fig. 35b. For simplicity we take the limit

where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. 21 This is accomplished

by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result for Fig. 35b is

then given by

Fig. 35b = S� i n̄ · (p
1

�P )

(P � p
1

)2
i n · (P̄ � p

2

)

(P̄ � p
2

)2
(11.6)

= S�
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n̄ · P
n · p

2

n · (P̄�p
2

)

n · P̄
�

⌘ S� E(p
1?, p2?),

where this defines the function E, and we have defined the spinor factor for the outgoing quark-

antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (11.7)

The v⇤̄n appears here because of our convention for the antiquark spinors, see the discussion near

Eq. (5.8). Note that n̄ · p
1

> 0, n̄ · (P � p
1

) > 0, n · p
2

> 0, and n · (P̄ � p
2

) > 0. To obtain the

second line of Eq. (11.6) we used momentum conservation, and the equation of motion to remove

the small momentum components, n ·p
1

= ~p 2

1?/n̄ ·p1 and n̄ ·p
2

= ~p 2

2?/n ·p2. The final momentum

dependence of the result in Eq. (11.6) is defined as the “end-function” E(p
1?, p2?). We suppress

the dependence on the light cone momenta in its arguments since it is the ?-momenta that will

play the prominent role for our discussion here. The factor involving light-cone momenta that

appears in E will often occur at intermediate steps, so we define

 ⌘
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2
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2

)
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. (11.8)

In terms of power counting we note that the tree level amplitude scales as E(p
1?, p2?) ⇠ ��4

just as expected for the scaling of MDY

�

.

21The generalization to the case with P

2

, P̄

2 6= 0 is discussed in Eq. (11.14) below.
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Figure 38. a) Active-Active interaction for the hard scattering correlator in Eq. (11.4). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.

As an explicit example, for Fig. 38a we have

Fig. 38a = 2S�E(p
1?, p2?)

Z

d�dk
G0(k?) |2kz|�⌘⌫⌘

[�k+��0
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+i0][k���̄
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+i0]

= �2i S�E(p
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Z
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(2kz��0
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+i0)

= �1

2
S�E(p

1?, p2?)
Z
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= E(p
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i
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⇣1

✏
+ ln

µ2

m2

⌘

S� , (11.33)

where after using momentum conservation �0
1

and �̄
1

are given in Eq. (11.11), and the kz integral

was performed using Eq. (B.4). We also used the fact that up to the spinor factors a single Glauber

exchange yields 2G0(k?), where for this incoming q̄q pair we have

G0(k?) =
�ig2

~k 2

? +m2

T̄A ⌦ TA , (11.34)

and we have included the mass IR regulator. Since there is no dependence on the �i, the result in

Eq. (11.33) is identical to that in Eq. (10.6) multiplied by E(p
1?, p2?), and so as anticipated, the

correspondence G = S(G) goes through in the same manner here. The various correspondences

also remain true for active-active graphs where the hard vertex involves scattering or production,

rather than annihilation, and for higher loop orders.

From the second to last line in Eq. (11.33) we also see that the contribution of the active-

active Glauber graph corresponds to E(p
1?, p2?)

��i�(0)/2
�

S� in the notation of Eq. (9.1), where

�(0) = �(b? = 0). If we consider the iteration of active-active Glauber exchanges, the result again

yields a phase. Similar to the active-spectator graphs, the ⌘-regulator was already required for

the single-exchange graph, so the ladder sum cannot be carried out independent of considering

the loop involving the hard scattering vertex. In App. C.3 we carry out this calculation, finding

n

n

n

n
G

n

n
= S� E(p

1?, p2?) e�i�(0)/2 . (11.35)
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Figure 38. a) Active-Active interaction for the hard scattering correlator in Eq. (11.4). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄

Z

d�dk
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have
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= ūn�un̄
↵sCF

2⇡

�2h(✏, µ2/m2)

⌘
+ ln

µ2

⌫2

⇣1

✏
+ ln

µ2

m2

⌘

+
1

✏2
� 1

2
ln2

µ2

m2
� ⇡2

12

�

,

S(G)(Fig. 23c) = �2ig2CF ūn�un̄

Z

d�dk
(◆✏µ2✏ |kz|�⌘ ⌫⌘)

[k2? �m2][n · k + i0][n̄ · k + i0]
= 0 ,

G(Fig. 23d) = �2ig2CF ūn�un̄
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Z

d�kz d�d
0
k?

 �(◆✏µ2✏ |kz|�⌘ ⌫⌘)

2(~k 2 +m2)1/2(~k 2
? +m2)

�
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the
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⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-
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result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
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n̄ · p
1

(k++n · p
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)� (~k?+~p
1?)2 + i0

=
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k+ ��
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+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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of hadronic interpolating fields. The generalization of these results to SCET
I

is discussed in

Sec. 11.4. Finally, we also propose a definition of spectators and active exchanges valid at any

order in perturbation theory in Sec. 11.5.

11.1 Spectator-Spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in Fig. 35. Since the

hard scattering case with MDIS

�

has only a single hadron, these SS contributions only exist for the

hard annihilation case with MDY

�

, where the two participating spectators are created by �n and

�n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and our routing for

incoming and outgoing external momentum is shown in Fig. 35b. For simplicity we take the limit

where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. 21 This is accomplished

by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result for Fig. 35b is

then given by

Fig. 35b = S� i n̄ · (p
1

�P )

(P � p
1

)2
i n · (P̄ � p

2

)

(P̄ � p
2

)2
(11.6)
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n · p

2

n · (P̄�p
2

)

n · P̄
�

⌘ S� E(p
1?, p2?),

where this defines the function E, and we have defined the spinor factor for the outgoing quark-

antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (11.7)

The v⇤̄n appears here because of our convention for the antiquark spinors, see the discussion near

Eq. (5.8). Note that n̄ · p
1

> 0, n̄ · (P � p
1

) > 0, n · p
2

> 0, and n · (P̄ � p
2

) > 0. To obtain the

second line of Eq. (11.6) we used momentum conservation, and the equation of motion to remove

the small momentum components, n ·p
1

= ~p 2

1?/n̄ ·p1 and n̄ ·p
2

= ~p 2

2?/n ·p2. The final momentum

dependence of the result in Eq. (11.6) is defined as the “end-function” E(p
1?, p2?). We suppress

the dependence on the light cone momenta in its arguments since it is the ?-momenta that will

play the prominent role for our discussion here. The factor involving light-cone momenta that

appears in E will often occur at intermediate steps, so we define

 ⌘
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2
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. (11.8)

In terms of power counting we note that the tree level amplitude scales as E(p
1?, p2?) ⇠ ��4

just as expected for the scaling of MDY

�

.

21The generalization to the case with P

2

, P̄

2 6= 0 is discussed in Eq. (11.14) below.
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by

Fig.31a = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?)|2kz|�⌘⌫⌘

[k���2+i0][�k+��1+i0][k+��0
1+i0]

, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�kzd�d
0
k?

G0(k?)|2kz|�⌘⌫⌘

[2kz��1��2+i0][��1��0
1+i0]
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2
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�1 +�0

1
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2
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Z

d�d
0
k?

G0(k?)
(~k? + ~p1?)2

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) , (328)

where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.
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the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by
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G0(k?)|2kz|�⌘⌫⌘
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, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

Cn = C̃n � C(G)
n
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it to be Wn(�1, 0) since in this case it is generated in the QCD to SCETII matching calculation

from integrating out o↵shell propagators along the incoming quark line plus non-abelian graphs.

We have

C̃n(Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

n̄ · (k�P+p1) n̄ · (k+p1) |n̄ · k|�⌘⌫⌘

[k� + i0][(k�P+p1)2 + i0][(k+p1)2 + i0]
.

(329)

From Eq. (67) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (329) gives

C(S)
n (Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

(�1)|n̄ · k|�⌘⌫⌘

[k� + i0][�k+ + i0][k+ + i0]
, (330)

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(GS)
n vanishes for the same reason). The

reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons can not

couple to collinear lines without knocking them o↵shell, and hence are only leading power for the

active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
n (Fig.31b) = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?) |n̄ · k|�⌘⌫⌘

[k� + i0][�k+ ��1 + i0][k+ ��0
1 + i0]

. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives
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n (Fig.31b) = �1
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Z

d�d
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k? G0(k?)E(p1? + k?, p2?) . (332)

This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)
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active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
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. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives
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This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)
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Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the DIS hard scattering correlator in Eq. (11.4). a) is the lowest order end, b) involves Glauber

exchange, c) is the corresponding graphs with a Wilson line interaction involving a collinear gluon.

(11.20). Since
R

dk�|k�|�⌘/(k� � i0) = +i/2 +O(⌘), this flips the overall sign of the final result

for C(G)

n in Eq. (11.21). In this case the Glauber subtraction on the collinear graph would not

be equal to the Glauber graph itself, and we could not simply absorb the Glauber graph into the

collinear Wilson line. (The direction dependence is still canceled in Cn�C(G)

n , and only encoded

by G in this case.)

For the graphs in Fig. 36c,d the results can be obtained by swapping n $ n̄, p
1

$ p
2

,

n · P̄ ! n̄ · P , and TA ⌦ TA ! T̄A ⌦ T̄A in the analysis above. Therefore we find

C(G)

n̄ (Fig.36d) = G(Fig.36c) . (11.23)

Here the W †
n̄ = W †

n̄(�1, 0) Wilson line in the J
�

current has to extend from (�1, 0) in order for

the correspondence in Eq. (11.23) to be true. For easy reference we record the Feynman rules for

collinear Wilson lines in various directions in App. B.4. We see that the correspondence between

Glauber subtractions on the collinear graphs, and the Glauber graphs themselves is sensitive to

the direction of each of the Wn and W †
n̄ Wilson lines in the hard current J

�

. Again, if the Wilson

line in the hard scattering current were taken to extend out to +1, then the two amplitudes in

Eq. (11.23) would di↵er by a sign.

Next we consider active-spectator scattering for the MDIS

�

amplitude of Eq. (11.4), which has

active quarks in the initial and final states, and only n̄-collinear spectators from the one incoming

hadron. The relevant diagrams are shown in Fig. 36. We let the incoming momentum of the

hadron be P̄ = n · P̄ n̄µ/2 and label the outgoing quark momenta as p
1

and p
2

as shown. At tree

level the correlator is

Fig.37a = S� i n · (P̄ � p
2

)

(P̄ � p
2

)2
= �iS� 1

~p 2

2?

n · p
2

n · (P̄�p
2

)

n · P̄
⌘ S� E(p

2?), (11.24)

which defines the end factor E(p
2?), and again we suppress the dependence on n · p

2

in its

arguments. We distinguish this function from that in Eq. (11.6) by its dependence on only a

single ?-variable. Note that E(p
2?) ⇠ ��2 just as expected for the scaling of MDIS

�

.
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Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the DIS hard scattering correlator in Eq. (11.4). a) is the lowest order end, b) involves Glauber

exchange, c) is the corresponding graphs with a Wilson line interaction involving a collinear gluon.
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can absorb this Glauber into the Collinear Wilson line with 
   physical directions (note:  connection to eikonalization)

•

J� = (�̄nWn)S†
n�Sn̄(W †

n̄�n̄)
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is

Fig. 35a = S�i4
Z

d�dk
2G(k?) (�1)2

[k+��
1

+i0][�k+��0
1

+i0][k���̄
1

+i0][�k���̄0
1

+i0]

=
2(�i)2

2
S�

Z

d�d�2k?
G(k?)

(�
1

+�0
1

)(�̄
1

+ �̄0
1

)

= �S�

Z

d�d�2k?
G(k?)

(~k? + ~p
1?)2 (~k? � ~p

2?)2

= �S�

Z

d�d�2k? G(k?) E(p
1? + k?, p2? � k?) . (11.9)

To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
1

n̄ · p
1

(k++n · p
1

)� (~k?+~p
1?)2 + i0

=
1

k+ ��
1

+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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factors in Eq. (11.9) include

�
1

=
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� n · p
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1

=
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, (11.11)
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=
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2?)2
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2

� n̄ · p
2

, �̄
1

=
(~k? � ~p

2?)2

n · (P̄�p
2

)
+ n̄ · p

2

.

To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
1

+�0
1

and �
2

+�0
2

, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.

If we hold the photons q? = �p
1? � p

2? fixed, then we can consider Fourier transforming in

�p? = (p
2? � p

1?)/2, to give

ASS(�p?, q?) = Fig. 35b

= �S�

Z

d�d�2k? G(k?) E
⇣

k? ��p? � q?
2
,�p? � k? � q?

2

⌘

⌘ �S�

Z

d�d�2k? G(k?) E0(�p? � k?, q?)

= �S�

Z

d�d�2k?
Z

dd�2b? e�i~k?·~b? G̃(b?)
Z

dd�2b0? e�i(�~p?�~k?)·~b0?Ẽ0(b0?, q?)

= �S�

Z

dd�2b? e�i�~p?·~b? Ẽ0(b?, q?) ei�(b?). (11.12)

In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the

phase space integral over �p?,
Z

d�d�2�p?
�

�ASS(�p?, q?)
�

�

2

= |S� |2
Z

d�d�2�p?
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, (11.13)
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the expressions more compact. From the final result we see that the iterations of the spectator-
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (314). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(315)
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where we have defined the spinor factor for the outgoing quark-antiquark as

S� = ūn�
µ
?un̄ . (316)

Note that n̄ · p1 > 0, n̄ · (P � p1) > 0, n · p2 > 0, and n · (P̄ � p2) > 0. To obtain the second line

of Eq. (315) we used momentum conservation, and the equation of motion to remove the small

momentum components, n·p1 = ~p 2
1?/n̄·p1 and n̄·p2 = ~p 2

2?/n·p2. The final momentum dependence

of the result is defined as the end-function E(p1?, p2?). We suppress the dependence on the light

no analogous soft or collinear diagrams at leading power
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
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and �
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+�0
2

, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by

Fig.31a = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?)|2kz|�⌘⌫⌘
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, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�kzd�d
0
k?

G0(k?)|2kz|�⌘⌫⌘

[2kz��1��2+i0][��1��0
1+i0]

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�1 +�0

1

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

n̄·p1 n̄·(P�p1)

n̄·P
Z

d�d
0
k?

G0(k?)
(~k? + ~p1?)2

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) , (328)

where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.
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� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange
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defined. The active-spectator Glauber exchange graph in Fig. 31a is given by
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where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

• cancel?

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(S)(G)

n vanishes for the same reason).

The reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons

cannot couple to collinear lines without knocking them o↵shell, and hence are only leading power

for the active attachments which generate soft Wilson lines. Thus there is no leading power soft

diagram that is analogous to the active-spectator interaction in Fig. 36b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (11.18),
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Comparing this integral with the active-spectator Glauber result in Eq. (11.15) we see that the

two are the same up to the presence of di↵erent rapidity regulators and the absence of �
2

(k?)

in Eq. (11.20). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and

then using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives
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This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (11.17), despite the lack of �
2

and di↵erence in rapidity regulators,

C(G)

n (Fig.36b) = G(Fig.36a) . (11.22)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. 10.1. In particular, this type of Glauber exchange can be absorbed

into the collinear Wilson lines, in an analogous manner to the way we discussed absorbing certain

Glauber exchanges into soft Wilson lines in Sec. 10.1. The fact that these active-spectator Glauber

exchanges can be absorbed is consistent with the contour deformation picture in CSS, where the

combined collinear+Glauber loop integral can be deformed away from the Glauber region for

these types of diagrams [18, 28].

In SCET the collinear subtraction result is sensitive to the direction of the Wilson line Wn

which is encoded by the sign in the propagator [k� + i0], and the Glauber subtraction C(G)

n

precisely removes this dependence. In order for the correspondence in Eq. (11.22) to be true it is

important for n-n̄ annihilation that the Wn = Wn(�1, 0) Wilson line in the J
�

current is taken

to extend from (�1, 0) in the Wilson line integration variable n · x. If instead we had taken this

Wilson line to extend from (0,1) then we would replace [k�+ i0] ! [k�� i0] in Eqs. (11.18) and
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Figure 36. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the hard annihilation Drell-Yan correlator in Eq. (11.4). a) and c) involve Glauber exchange, while b)

and d) are the corresponding graphs with Wilson line interactions involving a collinear gluon.

abelian graphs. We have
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From Eq. (5.50) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (11.18) gives
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two are the same up to the presence of di↵erent rapidity regulators and the absence of �̄
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example
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1
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Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2
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2?, the various k? dependent
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
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and �
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+�0
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, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.

If we hold the photons q? = �p
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2? fixed, then we can consider Fourier transforming in
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1?)/2, to give
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= �S�

Z
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the
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factors in Eq. (11.9) include
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.

To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
1

+�0
1

and �
2

+�0
2

, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.

If we hold the photons q? = �p
1? � p

2? fixed, then we can consider Fourier transforming in

�p? = (p
2? � p

1?)/2, to give

ASS(�p?, q?) = Fig. 35b
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Measurements (like beam thrust & transverse thrust) that disrupt this 
 integration can cause a non-cancellation. (Gaunt;  Zeng)

Single t-scale SCET:

�p� � �QCD � T cancel as in inclusive DY, 
up to power corrections

�QCD
T � 1

(Aybat & Sterman)

�p� � T ,
�

QT O(�4
s)starts at          , calculable

factorization violation(cf.  Gaunt;  Zeng) (II)� f � f

Need a multi t-scale SCET for most interesting effects



Summary

•

•

Future Directions

• Joint DGLAP(  ) and BFKL(  ) resummation for small-xµ �

• Study and prove or disprove factorization for less inclusive processes

• Improve theoretical description of Underlying Event

• ….

•
EFT formalism for             ,  Fwd. Scattering & Fact. Violations� t

Universal Operators that can be used for many processes & problems

Reggeization,  BFKL,  Shockwave picture, S-G & C-G overlaps, …

• Promising new method to measure Top Quark Mass 

• More pT bins,  NNLL, fits , combine SoftDrop & no SoftDrop, …

• pp Monte Carlo calibration


